>>>>>>等离子体技术在医疗器械领域的应用2
用等离子体改善生物分子在免疫测定和微阵列平台的粘附性
等离子体技术可以解决生物材料在诊断基体上的黏附性问题。它通过给表面提供特殊的化学官能团,使生化元素能够耦合成共价键来实现。羧基、羟基和氨基是用等离子体工艺可以轻易获得的常见的化学官能团的重要实例。例如,在微列阵工业,氨基可以为工作表面提供可直接黏附核苷(DNA或RNA)和寡核苷酸的粘结点。如果原子间的排列空间阻碍了结合这些大生物分子,这时可以使用原分子,有时也叫做“键合”。键合可以使生物分子以适当的结构吸附在表面提供空间。确实,键合分子本身也需要表面被活化以帮助它们固着在基体上。通常,氧气等离子体的直接作用就可以满足改善这些分子的结合效果。尽管如此,有时也需要一些特定的官能团。例如,有些捕获剂可以在酸性或碱性环境下很好的工作。如果捕获剂通过羟基进行键合,则可提供酸性环境。相反,氨基可以提供一个碱性的环境。
有两种碱性方法可以使表面带上特定的化学基团。一种方法是通过PEC V D沉积含有所需官能团的涂层,另一种方法是使现有的官能团产生等离子体并使之能够结合在表面上。虽然后面的方法更加简单,但前者具有更高的表面官能团浓度(10%-20%)。使用氨气作为原料气可以在表面上结合-NH3。甲醇用来结合羟基,同时使用甲醇和CO2可以提供羧基。不幸的是,沉积这些官能团同时会发生一些副反应,从而改变主官能团。例如,氨气等离子体在沉积伯氨基的同时也会沉积季氨、叔胺、腈、亚胺等。这些基团的比例根据等离子体系统和使用的参数变化而变化。尽管如此,这种方法也可提供2-8%的所需官能团。
有时仅提供正确的化学官能团是不够的。氨基可增加表面能量使之更加呈现出亲水性。有时并不需要过度亲水的表面,例如在微阵列平台上的凝胶滴剂排列,因为这些微滴可以湿润表面。这种类型的湿润形成了难看的小滴。同样,等离子体可以解决这个问题,通过控制表面能量来保持小滴的形态,即使在有氨基的情况下。在微列阵平台的等离子体氨化处理时,在工艺中加入氟元素是一种控制的方法。氟可以约束平台的基底并增加它的疏水性,因此可使小滴保持它的球态。幸运的是该工艺既不会影响表面沉积的伯氨浓度,也不会影响凝胶与平台的共价键合。
免疫测定平台的形状、尺寸和结构会经常发生变化和改变。96和384孔板是最常见的基板类型。等离子体处理是使孔板变得亲水,从而有利于固定抗原、抗体以及其他生物活化小分子。一个潜在的问题是在流体分配时会形成气泡,可以用等离子体来控制。在图7中我们把两个孔进行对比,(7a)未经等离子体处理,(7b)经过了等离子体处理。孔(7a)含有一个捕集到的气泡。这个气泡会导致分光光度计的读数错误,甚至根据其所占用的空间而有可能溢出到邻近的孔内。等离子体可以确保孔内的分析物完全被浸润,从而实际上排除了形成气泡的可能性。
上述段落解释了疏水性的池如何在分析液中捕集气泡。但是,过于亲水的池会导致分析液在毛细作用下爬到平台层上并可能污染临近的池。有这样一个实例,我们得到了一个由疏水聚合物制造的免疫测定平台。这个聚合物提供了许多底部带有金检测器的池孔。在沉积生物传感器之前需要清洁金面,因此需要把平台暴露在氧气等离子体中。当等离子体对金面进行很好的清洁的同时,它对池孔侧面有一个不好的作用,会导致分配的生物传感液在毛细作用下爬到侧面上。对于等离子工艺工程师来说难点在于在清洁金板的同时要维持池孔壁的亲水程度。可以通过使用混合原料气的等离子体来实现该目的:一方面用来去除金面上的碳氢污染物,另一方面通过添加氟基使孔壁趋向于疏水。不管任务有多困难,工艺的运行已经证明了等离子体表面改性的全能性。
医疗器械需要“不粘”性能
“不粘”表面的概念在耐用厨具行业众所周知。在蒸煮罐的表面涂上一层Teflon?可防止食物粘附在烹饪的表面上。“不粘”的应用范围已经很好的扩展到煎锅产品。体内和体外医疗器械有时需要表面能够阻止蛋白质或细胞的粘附,以便提高血液相容性。例如,可以通过在表面涂覆类P T F E材料来控制抗凝血酶的活性。
降低表面自由能可以减少表面的吸附力,表面自由能也就是表面可以用来形成化学键的能量。可行的方法之一是涂上低表面能的涂层。碳氟聚合物涂层具有类Teflon?的性质,并且和Teflon?一样都是由(C Fx ) n化学单元组成。这种涂层可以很容易的通过PEC V D粘附在各种材料上。等离子体处理通过在表面聚合碳氟化合物而提供了一个可靠、生物相容且绿色的减少材料表面能量的方法,且具有高可控性。泵出口处的净化器可以吸收所有出气口处的碳氟化合物。
据报道,过长时间的DNA与聚丙烯PCR板的交互作用会导致DNA变性。这就意味着当使用聚丙烯容易贮存DNA时,时间过久会降低所贮存DNA的质量和数量。研究表明用氧气等离子体处理后的聚丙烯板会降低对DNA的吸附力。氧气等离子体可使表面带负电荷。人们相信这些负电荷可以排斥人造DNA的硅酸盐主链,这样便可阻止DNA粘附在表面上。
如何验证等离子体的作用?
接触角测量是一种广泛使用的测量表面粘合力的方法。未处理的聚合物表面能较低,滴在这种表面上的水珠呈现出高接触角。这是由于水珠的内聚力强于对表面的粘合力。等离子体处理后的表面的水滴接触角非常低,这是因为通过极性化学官能团的形式增加了表面的能量。这些能量用来粘结水分子,使水珠沿着表面展开。这就是亲水性或浸润性的表面。因此低表面接触角表示表面是可浸润的。
X射线光电子能谱(xps)和表面衍生技术用来确定被所需化学基团修饰的表面的百分比。例如:丙烯胺的表面聚合能够形成氨基。为了确定伯胺的数量,可以通过试剂选择性的将伯胺氟化。用氟是因为它很容易被xps检测出来,而且它的化学性质没有改变(例如氮可以和含氮的功能团共存)。用xps检测出表面氟的浓度就可以得出表面原有伯胺的浓度。
多年来,等离子体技术已经应用于半导体行业的微芯片制造领域。众所周知这些工艺具有很高的复杂性,但等离子体系统很适合于这种工业。最近,等离子体技术已经延伸到聚合材料领域。尽管在该领域等离子体技术具有优势和可操作性,但该应用领域扩展的很慢。原因之一是通常等离子体方法的成本高,且限制生产过程的灵活性。如今,等离子体公司不仅要求工程师尽量降低产品的成本,同时要提高产品的灵活性和多功能性。如今的系统可提供批次式和在线式结构,也可提供低压或大气压系统。它们很容易被集成到现有的生产线上,非常容易使用,且只需很低的人力成本进行操作。
等离子体技术在医疗器械领域获得了很高的评价,因为它可以很好的对表面进行清洁和改性,实际是它也是一个干法、绿色的工艺。它不再被认为是一种“巫术”或需要进行表面预处理的昂贵选择。这种高效工艺使生产制造变得更加容易,为未来的技术奠定了基石。idwq0005