激光的产生必须有激励源(包括光、电或化学等),使激光介质(固体、气体、液体、半导体等物质)受激振荡,产生辐射和放大。激光具有单色性好、方向性好、能量高、密度高、发散度小,以及激光束照射到生物组织可产生光热效应、光电磁效应、光化学效应、生物刺激效应等特点。激光在医疗上充分了发挥凝固、烧灼、切割、气化、光敏、针灸、免疫、麻醉、止痛等多种功能起到了很大的作用。
激光与普通光一样其发生原理与发光物质内部的原子和分子运动有关,激光的受激辐射和受激吸收互为逆过程,就单个原子而言二者发生的机率是相同的;一般在物质中,处于低能级的原子比高能级的多,所以受激吸收比受激辐射要占优势,当外来的光子照射时,看到的都是光吸收现象,要使受激辐射超过受激吸收就必须使处于高能级的原子数多于低能级的原子数才能实现粒子数的反转。
激光就是这种能够实现粒子数反转具有亚稳态的物质,它的形式可以是固体、气体或半导体等,激光主要有两种形式,一般来说以电或光对光工作物质进行激励的方式较为常见,电激励常用于气体激光器,它是通过直流放电、交流放电、高频和脉冲放电等多种形式来激励工作物质,光激励是用普通光或激光照射工作物质,常用于各种固体激光器。
除此以外,还有化学激励、核激励、热激励等方式来激励工作物质。在实现了粒子数反转的工作物质中,原子虽然可以产生受激辐射,但这种辐射是杂乱无章的;为了获得方向性及波长一致具有较高能量的光能还需要将工作物质放人一个光学谐振腔内,光学谐振腔是由两块光学反射镜组成,其中一块是全反射镜,它要求反射率为99%以上,而另一块是部分反光镜,允许有小部分透射,大部分反射,这样沿两镜分共法线方向往返的光被镜面反射后可以多次通过工作物质逐次放大增强,使光子数量获得雪崩式的增加,当这种光波增强到足以抵挡谐振腔内各种损耗时,就可以在谐振腔内形成持续的振荡,这时从部分反射镜透射出来的那部分振荡就形成了激光光学。
谐振腔内的一个重要作用就是只允许反射镜面相垂直的光线和波长的整倍数与腔体长度相一致的光线在腔内产生振荡,这样就严格限制了输出光子的方向和频率,保证了激光方向性好、亮度高、颜色纯等特性。因此,工作物质激励和谐振腔是产生激光最基本的条件。