输入电阻
即前级放大器的输入电阻。输入电阻越大,因电极接触电阻不同而引起的波形失真越小,共模抑制比越高。一般要求大于2MΩ,国际上大于50MΩ。
共模抑制比
心电图机一般采用差动式放大电路,这种电路对于同相(又称共模信号,例如周围的电磁场所产生的干扰信号)有抑制作用,对异相信号(又称差模信号,需采集的心电信号就是差模信号)有放大作用。共模抑制比(CMRR),指心电图机的差模信号(心电信号)放大倍数Ad与共模信号(干扰和噪声)放大倍数Ac之比,表示抗干扰能力的大小。要求大于80dB,国际上大于100dB。
抗极化电压
皮肤和表面电极之间会因极化而产生极化电压。这主要是由于心动电流流过后形成的电压滞留现象,极化电压对心电图测量的影响很大,会产生基线漂移等现象。极化电压最高时时可达数十毫伏乃至上百毫伏。处理不好极化电压,产生的干扰将是很严重的。
尽管心电图机使用的电极已经采用了特殊材料,但是由于温度的变化以及电场和磁场的影响,电极仍产生极化电压,一般为200~300mV,这样就要求心电图机要有一个耐极化电压的放大器和记录装置。要求大于300mV,国际上大于500mV。
灵敏度
是指输入1mV标准电压时,记录波形的幅度。通常用mm/mV表示,它反映了整机放大器放大倍数的大小。心电图机标准灵敏度为10mm/mV。规定标准灵敏度的目的是为了便于对各种心电图进行比较。
内部噪声
是指心电图机内部元器件工作时,由于电子热运动产生的噪声,而不是因使用不当外来干扰形成的噪声,这种噪声使心电图机没有输入信号时仍有微小的杂乱波输出,这种噪声如果过大,不但影响图形美观,而且还影响心电波的正常性,因此要求噪声越小越好,在描记曲线中应看不到噪声波形。噪声大小可以用折合到输入端的作用大小来计算,一般要求低于输入端加入几微伏至几十微伏以下信号的作用。国际上规定≤10μV。
时间常数
在直流输入时,心电图机描记出的信号幅度将随时间的增加而逐渐减小,输出幅度自100%下降至37%左右所需的时间。一般要求大于3.2s,若过小,幅值下降的过快,甚至会使输入的方波信号变成尖波信号,这就不能反映心电波形的真实情况。
频率响应
人体心电波形并不是单一频率的,而是可以分解成不同频率、不同比例的正弦波成分,也就是说心电信号含有丰富的高次谐波。若心电图机对不同频率的信号有相同的增益,则描记出来的波形就不会失真。但是放大器对不同频率的信号的放大能力并不一定完全一样的。心电图机输入相同幅值、不同频率的信号时,其输出信号幅度随频率变化的关系称为频率响应特性。心电图机的频率响应特性主要取决于放大器和记录器的频率响应特性。频率响应越宽越好,一般心电图机的放大器比较容易满足要求,而记录器是决定频率响应的主要因素。一般要求在0.05~150Hz(-3dB)。
绝缘性
为了保证医务人员和患者的安全,心电图机应具有良好的绝缘性。绝缘性常用电源对机壳的电阻来表示,有时也用机壳的漏电流表示。一般要求电源对机壳的绝缘电阻不小于20MΩ,或漏电流应小于100μA。为此,心电图机通常采用“浮地技术”。
安全性
心电图机是与人体直接连接的电子设备,必须十分注意其对人体的安全性。从安全方面考虑,心电图机可分属三型:B型、BF型和CF型(详见中华人民共和国国家标准GB10793-89心电图机和使用安全要求)。根据国际电工技术委员会(IEC)通则中规定: 医用电器设备与患者直接连接部分叫"应用部分"。为了进一步保证患者安全,医用电器设备的应用部分往往也加有隔离措施、光电偶合、电磁波偶合等。根据应用部分的隔离程度,医用电器设备的应用部分往往也加有隔离措施、光电偶合、电磁波偶合等。
根据应用部分的隔离程度,医用电器设备分为B、BF、和CF型。
B型: 应用部分没有隔离。
BF型: 应用部分浮地隔离,可用于体外和体内,但不能直接用于心脏。
CF型: 应用浮地隔离,对电击有高度防护,可直接用于心脏。