据physorg网站2007年11月4日报道,一个国际科学家研究小组4日宣布,通过共同努力他们绘制了肺癌遗传变异图。肺癌是世界上导致癌症病人死亡的头号杀手。《自然》杂志在线版本于11月4日刊登了这一研究成果。研究对肺癌细胞的非正常遗传进行了全面观察,发现在人肺肿瘤中有五十多个基因组区域频率地出现或消失。
虽然我们已经知道这些区域中包含的基因有三分之一在导致肺癌的过程中扮演着重要角色,但是通过此次研究我们发现了大量存在的新基因。科学家们在研究中发现了一个重要的基因变异,以前我们并没有将他们与任何癌症联系在一起。该基因变异是肺癌的重要一部分。这一研究发现为了解肺癌疾病的生物学起因和找到治疗潜在的新目标带来了光明。
麻省理工和哈佛大学Broad研究院资深准成员和Dana-Farber癌症研究院与哈佛医学院副教授马太.米尔森是该论文的作者之一。他说,“肺癌基因组的新研究发现不论是其宽度和深度都是空前绝后。它为我们树立根基,为我们指明了控制肺细胞生长的重要基因。这一研究发现对于肺癌的生物学研究至关重要,将帮助我们制定新的癌症诊断和治疗的新策略。”
麻省理工学院和哈佛大学Broad研究院创始董事埃里克.蓝德尔是本论文的作者之一。他说,“肺癌遗传图为我们提供了一幅肺癌这种可怕疾病的系统体系图,确定了我们所知道的东西,但是同时也为我们解答了一直令我们迷惑不解的存在许多缺失部分的原因。这一研究成果具有更加广泛的应用范畴,我们可以和应当把这一研究成果用于分析各种类型的癌症。当然,当初该研究就被定义为一个引导项目,用于指引科学家更加全面的找到引发癌症的遗传原因。”
肺癌是世界上导致癌症病人死亡的头号杀手,每年都有100多万人死于肺癌,其中美国有15万多人。新肺癌治疗方法依赖于对刺激癌细胞错误生长的更深入了解。经过数十年的研究,我们已经很清楚,肺癌像大多数其它癌症一样主要源于脱氧核糖核酸变异。脱氧核糖核酸变异相伴人的一生。但是这些自然脱氧核糖核酸变异和他们的生物学原理的大部分我们仍无法了解。为了创建一个肺癌细胞遗传差异基因组目录,科学家最近发起了一个大型研究项目,以研究肺腺癌。这一项目被命名为肿瘤排序计划(TSP),癌症研究领域的科学家和临床医生共同参与这一研究项目。
肿瘤排序项目研究人员对肺癌病人的五百多肿瘤样品进行了研究。通过大量收集高质量的样品,使确定不同病人共同具有的遗传变异成为可能。这种遗传变异能够帮助确定导致癌细胞生长的重要基因。米尔森说,“该研究项目尽可能地吸纳肿瘤学家、病理学家和外科医生参与,因为他们多年以来一直坚持不懈地从事防止肺癌病人组织免受损害的研究。”
为了分析每个肺肿瘤中的脱氧核糖核酸,科学家们依靠最近的基因组技术,对人体中数百万个遗传标记进行了扫描,即单核苷酸多态性。获得的高分辨率图像帮助确定了肿瘤中基因组过多出现或缺失部分。然后利用包括GISTIC计算机分析方法和肉眼观察单核苷酸多态性数据方法在内的新分析工具对基因组失常区域进行分析。加迪.格兹、芭芭拉.威尔、拉米恩.伯洛克西姆和杰姆.罗宾逊共同发明了以上两种分析方法。
在此项研究中,研究人员发现了频率出现在肺癌病人体内的57%的遗传变异。这部分遗传变异中仅有约15%是我们以前所知道的与肺癌存在关系的。此次研究所取得的最突出成果在于确定了14号染色体区域有两个已知基因环绕,以前我们并未将这种基因与癌症联系在一起。通过对癌症细胞的进一步研究,休.安乌和其它Dana-Farber研究院的研究人员一道发现了一外名为NKX2.1的基因,该基因可以影响癌症细胞的生长。NKX2.1基因通常在肺内部微小气囊(气泡)特殊细胞群中扮演“规则主管”的角色,控制其它关键基因的活动。这一研究发现是一个特定细胞群的基因而不是所有细胞基因都能够促使癌症生长。该研究发现将帮助我们研制新的分子靶向癌症药物。
肿瘤排序项目的第二阶段研究目前正在进行之中,将对第一阶段分析所用的肺肿瘤样品进行检查。第二阶段研究可能会获得甚至更加详细的遗传变异图。使用高产脱氧核糖核酸排序法,科学家将确定数百个基因中遗传代码的微小变化。这一排序法已经应用于其它癌症或更为普通常见的细胞生长研究中。 (中国科技信息网Chinainfo)
英文原文链接参见:http://www.physorg.com/news113410062.html
原始出处:
Nature advance online publication 4 November 2007 | doi:10.1038/nature06358; Received 12 April 2007; Accepted 10 October 2007; Published online 4 November 2007
Characterizing the cancer genome in lung adenocarcinoma
Barbara A. Weir1,2,27, Michele S. Woo1,27, Gad Getz2,27, Sven Perner3,4, Li Ding5, Rameen Beroukhim1,2, William M. Lin1,2, Michael A. Province6, Aldi Kraja6, Laura A. Johnson3, Kinjal Shah1,2, Mitsuo Sato8, Roman K. Thomas1,2,9,10, Justine A. Barletta3, Ingrid B. Borecki6, Stephen Broderick11,12, Andrew C. Chang14, Derek Y. Chiang1,2, Lucian R. Chirieac3,16, Jeonghee Cho1, Yoshitaka Fujii18, Adi F. Gazdar8, Thomas Giordano15, Heidi Greulich1,2, Megan Hanna1,2, Bruce E. Johnson1, Mark G. Kris11, Alex Lash11, Ling Lin5, Neal Lindeman3,16, Elaine R. Mardis5, John D. McPherson19, John D. Minna8, Margaret B. Morgan19, Mark Nadel1,2, Mark B. Orringer14, John R. Osborne5, Brad Ozenberger20, Alex H. Ramos1,2, James Robinson2, Jack A. Roth21, Valerie Rusch11, Hidefumi Sasaki18, Frances Shepherd25, Carrie Sougnez2, Margaret R. Spitz22, Ming-Sound Tsao25, David Twomey2, Roel G. W. Verhaak2, George M. Weinstock19, David A. Wheeler19, Wendy Winckler1,2, Akihiko Yoshizawa11, Soyoung Yu1, Maureen F. Zakowski11, Qunyuan Zhang6, David G. Beer14, Ignacio I. Wistuba23,24, Mark A. Watson7, Levi A. Garraway1,2, Marc Ladanyi11,12, William D. Travis11, William Pao11,12, Mark A. Rubin2,3, Stacey B. Gabriel2, Richard A. Gibbs19, Harold E. Varmus13, Richard K. Wilson5, Eric S. Lander2,17,26 & Matthew Meyerson1,2,16
Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
Cancer Program, Genetic Analysis Platform, and Genome Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
Institute of Pathology, University of Ulm, Ulm 89081, Germany
Genome Sequencing Center,
Division of Statistical Genomics and,
Department of Pathology and Immunology, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA
University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max-Planck Society and the Medical Faculty of the University of Cologne, Cologne 50931, Germany
Center for Integrated Oncology and Department I for Internal Medicine, University of Cologne, Cologne 50931, Germany
Departments of Medicine, Surgery, Pathology, and Computational Biology,
Human Oncology and Pathogenesis Program,
Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
Section of Thoracic Surgery, Department of Surgery and,
Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
Department of Pathology and,
Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
Department of Surgery, Nagoya City University Medical School, Nagoya 467-8602, Japan
Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
Department of Thoracic and Cardiovascular Surgery,
Department of Epidemiology,
Department of Pathology and,
Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
University Health Network and Princess Margaret Hospital, Toronto M5G 2C4, Canada
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
These authors contributed equally to this work.
Correspondence to: Matthew Meyerson1,2,16 Correspondence and requests for materials should be addressed to M.M. (Email: matthew_meyerson@dfci.harvard.edu).
Somatic alterations in cellular DNA underlie almost all human cancers1. The prospect of targeted therapies2 and the development of high-resolution, genome-wide approaches3, 4, 5, 6, 7, 8 are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in 12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.