以色列特拉维夫大学分子生物学和植物生态学系的肖·雅洛夫斯基教授在植物中发现了一种起“开关”作用的脂肪分子,它的开启或关闭可以控制植物细胞的生长。他认为人体内类似机制或许可以阻止癌细胞转移。
研究显示,植物中的这种脂肪分子对负责细胞生长的ROPs蛋白质具有控制作用。而人体中也存在与ROPs非常相似的蛋白质,它们参与伤口愈合,促进脑神经细胞发育,同时也发出化学信号告诉癌细胞何时转移。
当ROPs蛋白质与称为GTP的小分子结合后,这种小分子就会分裂为另一个GDP分子,GDP分子一旦与ROPs结合,ROPs就会失去活性。现在,研究人员已制造出一种变异分子,可以对ROPs蛋白质与GTP分子的结合进行控制。
雅洛夫斯基表示,人和植物虽然是完全不同的有机体,但也共享一些生物机制,同时存在于人体和植物内的ROPs蛋白质就是如此。当这些蛋白质开启时,可以促使细胞分裂和生长,如利用基因工程技术将人体内相关的ROPs关闭,即可起到延缓或终止癌细胞生长的作用,现在他们距这一目标只有一步之遥。
除应用于人体外,这项研究还可惠及农业领域。研究人员设计的另一种变异分子可诱使植物认为是病原体而发起攻击,从而产生避免感染的生物防御系统,减少化学杀虫剂的使用(郑晓春)。(生物谷Bioon.com)
>>>借着上海世博会的良好契机,"第一届肿瘤基础和转化医学国际研讨会"将于2010年10月12日在中国上海盛大开幕,这将为广大活跃在肿瘤基础和转化医学第一线的科研工作者提供一个互动交流的平台。
会议官方网站:www.cancerasia.org
生物谷推荐原文出处:
Current Biology doi:10.1016/j.cub.2010.03.057
An S-Acylation Switch of Conserved G Domain Cysteines Is Required for Polarity Signaling by ROP GTPases
Nadav Sorek, Oshik Segev, Orit Gutman, Einat Bar, Sandra Richter, Limor Poraty, Joel A. Hirsch, Yoav I. Henis, Efraim Lewinsohn, Gerd Jürgens, Shaul Yalovsky
Rho GTPases are master regulators of cell polarity [1]. For their function, Rhos must associate with discrete plasma membrane domains [2]. Rho of Plants (ROPs) or RACs comprise a single family [3,4,5]. Prenylation and S-acylation of hypervariable domain cysteines of Ras and Rho GTPases are required for their function [6,7,8,9,10,11]; however, lipid modifications in the G domain have never been reported. Reversible S-acylation involves the attachment of palmitate (C16:0) or other saturated lipids to cysteines through a thioester linkage and was implicated in the regulation of signaling [12]. Here we show that transient S-acylation of Arabidopsis AtROP6 takes place on two conserved G domain cysteine residues, C21 and C156. C21 is relatively exposed and is accessible for modification, but C156 is not, implying that its S-acylation involves a conformational change. Fluorescence recovery after photobleaching beam-size analysis [13] shows that S-acylation of AtROP6 regulates its membrane-association dynamics, and detergent-solubilization studies indicate that it regulates AtROP6 association with lipid rafts. Site-specific acylation-deficient AtROP6 mutants can bind and hydrolyze GTP but display compromised effects on polar cell growth, endocytic uptake of the tracer dye FM4-64, and distribution of reactive oxygen species. These data reveal an S-acylation switch that regulates Rho signaling.