癌细胞长久以来一直以"甜食"饮食盛名,利用大量的葡萄糖作为能源为细胞复制添砖加瓦。
目前,约翰霍普金斯大学的科学家开展的一项研究表明,被称为B细胞的淋巴腺癌细胞在无葡萄糖存在时能够利用谷氨酰胺进行细胞复制以生存,尤其在低氧条件下,这种情况在肿瘤中很常见。
在2012年1月4日出版的Cell Metabolism期刊上的一篇文章,Anne Le等人写道,这一发现是开发新颖的癌症疗法的关键,因为它提供了"概念验证"的证据,表明可以通过抑制一种叫做谷氨酰胺酶来抑制B细胞癌的生长。
Le注意到,尽管还不知道谷氨酰胺在B细胞癌生长中的作用,但在20种氨基酸里谷氨酰胺在血液循环中确实具有最高的水平。三羧酸循环(TCA或Krebs循环)被视为葡萄糖氧化的经典途径。然而,Le和其团队开展的实验表明,在葡萄糖不存在时B细胞能氧化利用谷氨酰胺。
研究还发现,当氧气稀少时,谷氨酰胺转换成谷胱甘肽的作用增强,谷胱甘肽是一种重要的化学分子,用于控制能致正常细胞损伤的含氧化学活性分子的积累。
当研究人员使用一种谷氨酰胺酶抑制剂时,培养皿中的B细胞癌的生长停滞了。
"TCA循环灵活利用谷氨酰胺和葡萄糖的途径可能对于癌细胞的增殖和生存--尤其在肿瘤低氧-低营养的微环境下非常重要,"Le说。
现在,或许科学家们能够利用这种生存策略来阻止癌细胞的生长。"对癌细胞在代谢压力下的新陈代谢及癌细胞重新编程生化途径进行更广泛和更深入的了解,可以丰富针对肿瘤代谢的治疗方法,"他说。
除了约翰霍普金斯大学医学院病理系助理教授Le外,其他来自约翰霍普金斯大学的研究人员还包括Sminu Bose, Arvin Gouw, Joseph Barbi, Takashi Tsukamoto, Camilo J. Rojas and Barbara Slusher。约翰霍普金斯大学脑科学研究所的Tsukamoto,、Rojas及Slusher等正在开发新的谷氨酰胺酶抑制剂药物。(生物谷bioon.com)
doi:10.1016/j.cmet.2011.12.009
PMC:
PMID:
Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells
Anne Le, Andrew N. Lane, Max Hamaker, Sminu Bose, Arvin Gouw, Joseph Barbi, Takashi Tsukamoto, Camilio J. Rojas, Barbara S. Slusher, Haixia Zhang, Lisa J. Zimmerman, Daniel C. Liebler, Robbert J.C. Slebos, Pawel K. Lorkiewicz, Richard M. Higashi, Teresa W.M. Fan, Chi V. Dang.
Summary: Because MYC plays a causal role in many human cancers, including those with hypoxic and nutrient-poor tumor microenvironments, we have determined the metabolic responses of a MYC-inducible human Burkitt lymphoma model P493 cell line to aerobic and hypoxic conditions, and to glucose deprivation, using stable isotope-resolved metabolomics. Using [U-13C]-glucose as the tracer, both glucose consumption and lactate production were increased by MYC expression and hypoxia. Using [U-13C,15N]-glutamine as the tracer, glutamine import and metabolism through the TCA cycle persisted under hypoxia, and glutamine contributed significantly to citrate carbons. Under glucose deprivation, glutamine-derived fumarate, malate, and citrate were significantly increased. Their 13C-labeling patterns demonstrate an alternative energy-generating glutaminolysis pathway involving a glucose-independent TCA cycle. The essential role of glutamine metabolism in cell survival and proliferation under hypoxia and glucose deficiency makes them susceptible to the glutaminase inhibitor BPTES and hence could be targeted for cancer therapy.