2012年8月23日 讯 /生物谷BIOON/ --一一项最新在老鼠动物模型试验中的研究证实一种已经被批准的并被使用了几十年的仿制药可作为一种潜在的癌症治疗药物,其通过破坏肿瘤的血液供应来使得肿瘤体积缩小。噻菌灵是一个通用的又美国FDA批准的廉价抗真菌的药物,其是一种口服药,已临床使用超过40年。截至目前为止,该药物并为用来来治疗癌症。
美国德州大学奥斯汀分校科学家在寻找酵母、青蛙、老鼠以及人类进化中的关系时意外发现药物潜在治疗癌症的功效,这一发现几乎是出于偶然。Hye Ji Cha, Edward Marcotte, John Wallingford和同事称其具有"血管阻断剂"的功能,相关研究论文发表在PLoS Biology杂志上,该抗真菌药能破坏新生成血管。
随着肿瘤的发展,肿瘤需壮大自己的血管网络来维持本身不受控制的生长。所以作为一个潜在的肿瘤治疗手段,任何有关饿死肿瘤血液供应的方法都是值得探讨的。在小鼠动物试验中,噻苯咪唑(thiabendazole)能抑制纤维肉瘤肿瘤血管的生长,其抑制率达到了50%,并且它也减缓肿瘤的生长。
该研究表明,噻苯咪唑很可能与其他化疗手段相结合用于临床肿瘤治疗。在早先的研究中,化学教授Marcotte和他的团队已经针对基因,因为单细胞酵母菌和脊椎动物有着常见的共同的进化路径。在没有血管的酵母中,基因控制着细胞的应激反应。在脊椎动物中,基因逐渐形成了一个新的角色:控制血管生成的过程,形成新的静脉和动脉。
Marcotte说,他们有一种预感,如果他们分析了这些基因,他们也许能找到靶向酵母中该基因通路的药物,该药物可作为血管生成抑制剂药物。研究人员发现药物能抑制青蛙胚胎发育过程中以及实验室培养的人血管的血管生长。之后,他们做了试验,发现该抗真菌药物能抑制小鼠纤维肉瘤肿瘤的血液供应,缩小肿瘤体积。
该小组目前正计划与临床肿瘤学家在临床试验中测试噻苯咪唑对癌症的治疗效果。来自不同的组织包括霍华德-休斯医学研究所、得克萨斯州癌症预防研究所、韦尔奇基金会和美国国立卫生研究院的资金支持了该项研究。(生物谷:Bioon.com)
编译自:Common Antifungal Drug Shrinks Tumors
doi:10.1371/journal.pbio.1001379
PMC:
PMID:
Evolutionarily Repurposed Networks Reveal the Well-Known Antifungal Drug Thiabendazole to Be a Novel Vascular Disrupting Agent
Hye Ji Cha1, Michelle Byrom1, Paul E. Mead2, Andrew D. Ellington1,3, John B. Wallingford1,4*, Edward M. Marcotte1,3*
Studies in diverse organisms have revealed a surprising depth to the evolutionary conservation of genetic modules. For example, a systematic analysis of such conserved modules has recently shown that genes in yeast that maintain cell walls have been repurposed in vertebrates to regulate vein and artery growth. We reasoned that by analyzing this particular module, we might identify small molecules targeting the yeast pathway that also act as angiogenesis inhibitors suitable for chemotherapy. This insight led to the finding that thiabendazole, an orally available antifungal drug in clinical use for 40 years, also potently inhibits angiogenesis in animal models and in human cells. Moreover, in vivo time-lapse imaging revealed that thiabendazole reversibly disassembles newly established blood vessels, marking it as vascular disrupting agent (VDA) and thus as a potential complementary therapeutic for use in combination with current anti-angiogenic therapies. Importantly, we also show that thiabendazole slows tumor growth and decreases vascular density in preclinical fibrosarcoma xenografts. Thus, an exploration of the evolutionary repurposing of gene networks has led directly to the identification of a potential new therapeutic application for an inexpensive drug that is already approved for clinical use in humans.