来自莫菲特癌症中心和南佛罗里达大学的研究人员已经开发出了一种能抑制致癌蛋白STAT3的小分子。这一发现将影响多种类型肿瘤的治疗工作,包括乳腺癌、肺癌、前列腺癌和其它依赖STAT3生存的癌症。
这项最新的研究成果发表在3月15日由美国癌症研究协会主办的Cancer Research杂志上。
莫菲特癌症中心药物研发部门的主席Said M. Sebti博士说:“STAT3蛋白与癌症患者的不良预后和对化疗的抵抗性均有一定关系。2种STAT3分子需要互相结合,这样才能导致恶性肿瘤的发生,这一过程被称为二聚化作用。现在,我们已经开发出了一种名为S3I-1757的小分子,它可以通过干扰STAT3-STAT3的相互结合从而抑制二聚化过程。一旦这一过程被抑制了,STAT3帮助癌细胞生存、生长和侵润的能力就会消失。”
这篇文章的共同作者Nicholas J. Lawrence博士也是该药物研发部门的成员,他说:“激活的STAT3能在一些水平上帮助癌症的生长,它促发了癌细胞不受控制的增殖以及癌细胞的侵润和扩散。这使得STAT3一度是药物研发和癌症治疗的首选靶标。”
1995年,STAT3蛋白首次被发现与细胞的恶性转化有关,但是研究人员还未能开发出针对该蛋白质的抑制剂。从某种程度上来说,这一挑战源于事实,因为STAT3-STAT3的相互作用参与了大量的生命活动,因此我们很难设计药物类小分子来抑制它。
有一段时间,研究者们一直在试图寻找STAT3-STAT3二聚化过程的抑制剂,现在科学家们终于克服了这一难题,并指出在实验室条件下,S31-1757能有效地中和STAT3的活性。
“我们采用的几种方法都显示出,S31-1757能够通过干扰STAT3的功能来抑制细胞的恶性转化,”Sebti说,“其中包括了抑制STAT3自身形成二聚体的能力。”
他们将在4月份于华盛顿举办的年度AACR会议上提交这一发现。(生物谷Bioon.com)
doi:10.1158/0008-5472.CAN-12-3175.
PMC:
PMID:
A Novel Inhibitor of STAT3 Homodimerization Selectively Suppresses STAT3 Activity and Malignant Transformation
Xiaolei Zhang, Ying Sun, Roberta Pireddu, Hua Yang, Murali K-Urlam, Harshani R-Lawrence, Wayne C-Guida, Nicholas J-Lawrence and Said M- Sebti.
STAT3–STAT3 dimerization, which involves reciprocal binding of the STAT3-SH2 domain to phosphorylated tyrosine-705 (Y-705), is required for STAT3 nuclear translocation, DNA binding, and transcriptional regulation of downstream target genes. Here, we describe a small molecule S3I-1757 capable of disrupting STAT3–STAT3 dimerization, activation, and malignant transforming activity. Fluorescence polarization assay and molecular modeling suggest that S3I-1757 interacts with the phospho-Y-705–binding site in the SH2 domain and displaces fluorescein-labeled GpYLPQTV phosphotyrosine peptide from binding to STAT3. We generated hemagglutinin (HA)-tagged STAT3 and FLAG-tagged STAT3 and showed using coimmunoprecipitation and colocalization studies that S3I-1757 inhibits STAT3 dimerization and STAT3–EGF receptor (EGFR) binding in intact cells. Treatment of human cancer cells with S3I-1757 (but not a closely related analog, S3I-1756, which does not inhibit STAT3 dimerization), inhibits selectively the phosphorylation of STAT3 over AKT1 and ERK1/2 (MAPK3/1), nuclear accumulation of P-Y705-STAT3, STAT3–DNA binding, and transcriptional activation and suppresses the expression levels of STAT3 target genes, such as Bcl-xL (BCL2L1), survivin (BIRC5), cyclin D1 (CCND1), and matrix metalloproteinase (MMP)-9. Furthermore, S3I-1757, but not S3I-1756, inhibits anchorage-dependent and -independent growth, migration, and invasion of human cancer cells, which depend on STAT3. Finally, STAT3-C, a genetically engineered mutant of STAT3 that forms a constitutively dimerized STAT3, rescues cells from the effects of S3I-1757 inhibition. Thus, we have developed S3I-1757 as a STAT3–STAT3 dimerization inhibitor capable of blocking hyperactivated STAT3 and suppressing malignant transformation in human cancer cells that depend on STAT3.