《自然》杂志7月9日在线发表由中国科学院生物物理研究所研究员刘迎芳领导的研究组和南开大学饶子和院士领导的南开大学—清华大学—生物物理所联合研究组,共同完成的一项有关禽流感病毒聚合酶结构的研究,在国际上率先揭示出流感病毒聚合酶关键部分PA亚基与PB1多肽复合体的精细三维结构,填补了禽流感病毒聚合酶结构领域研究的空白。这一结构的解析,为研究禽流感病毒的复制机制,以及设计抗流感病毒的药物提供了真实可用的模型。
该研究得到了国家自然科学基金委员会、科技部和中国科学院的支持,中国农业科学院哈尔滨兽医研究所研究员陈化兰和中国农业科学院中检所研究员于康震提供了禽流感病毒 ( H5N1/goose/Gu-angdong/1996) 的cDNA。
近年来,由H5N1亚型禽流感病毒引起的疫情的广泛传播对人类健康造成全球性重大威胁。由于病毒的不断变异,开发新型抗流感药物已成为世界科学界一项极为紧迫的重大研究课题。其中,揭示与流感病毒密切相关的蛋白质的三维结构,不仅对揭示流感病毒复制机制具有重要科学意义,而且对开发抗流感病毒药物具有重要价值。
据刘迎芳介绍,流感病毒基因组含有8个RNA片段,已知可以编码11种病毒蛋白质。其中,由PA、PB1和PB2这3个亚基组成的聚合酶复合体是负责病毒基因组RNA复制以及病毒mRNA转录的关键组分,同时由于它的高度保守性、低突变率,成为抗流感病毒药物设计的重要靶点。多年来的研究认为,PB1是病毒RNA聚合酶的催化亚基,负责病毒RNA的复制以及转录;PB2是负责以一种称为“Snatch”的方式夺取宿主mRNA的CAP帽子结构用于病毒mRNA转录;而PA亚基不但参与病毒复制过程,而且还参与病毒RNA转录、内切核酸酶活性、具有蛋白酶活性以及参与病毒粒子组装等多种病毒活动过程,因而在整个聚合酶复合体的研究中显得格外重要。
研究人员利用全新的思路,解析了PA与PB1氨基端多肽蛋白复合体的2.9埃分辨率晶体结构。该结构清晰显示了PA与PB1多肽相互作用模式,发现该作用位点的氨基酸残基在流感病毒中高度保守,这为广谱抗流感(包括人流感和禽流感)药物研究提供了一个理想的靶蛋白。同时,根据该复合体结构以及已知的一些蛋白突变体研究结果,推测了PA亚基在聚合酶中的作用,为进一步研究提供了分子基础。
有关专家表示,我国科学家在这一领域取得突破性进展,对揭示流感病毒聚合酶作用机制以及开展针对流感病毒药物设计工作都具有十分重要的意义。(生物谷Bioon.com)
生物谷推荐原始出处:
Nature,doi:10.1038/nature07120,Xiaojing He, Zihe Rao & Yingfang Liu
Crystal structure of the polymerase PAC–PB1N complex from an avian influenza H5N1 virus
Xiaojing He1, Jie Zhou1, Mark Bartlam2, Rongguang Zhang3, Jianyuan Ma1, Zhiyong Lou4, Xuemei Li1,4, Jingjing Li1, Andrzej Joachimiak3, Zonghao Zeng1, Ruowen Ge5, Zihe Rao1,2,4 & Yingfang Liu1
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
College of Life Sciences and Tianjin State Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
Department of Biological Sciences, National University of Singapore, 117543 Singapore
Correspondence to: Zihe Rao1,2,4Yingfang Liu1 Correspondence and requests for materials should be addressed to Z.R. (Email: raozh@xtal.tsinghua.edu.cn) or Y.L. (Email: liuy@ibp.ac.cn).
The recent emergence of highly pathogenic avian influenza A virus strains with subtype H5N1 pose a global threat to human health1. Elucidation of the underlying mechanisms of viral replication is critical for development of anti-influenza virus drugs2. The influenza RNA-dependent RNA polymerase (RdRp) heterotrimer has crucial roles in viral RNA replication and transcription. It contains three proteins: PA, PB1 and PB2. PB1 harbours polymerase and endonuclease activities and PB2 is responsible for cap binding3, 4; PA is implicated in RNA replication5, 6, 7, 8, 9, 10 and proteolytic activity11, 12, 13, 14, although its function is less clearly defined. Here we report the 2.9 ångström structure of avian H5N1 influenza A virus PA (PAC, residues 257–716) in complex with the PA-binding region of PB1 (PB1N, residues 1–25). PAC has a fold resembling a dragon's head with PB1N clamped into its open 'jaws'. PB1N is a known inhibitor that blocks assembly of the polymerase heterotrimer and abolishes viral replication. Our structure provides details for the binding of PB1N to PAC at the atomic level, demonstrating a potential target for novel anti-influenza therapeutics. We also discuss a potential nucleotide binding site and the roles of some known residues involved in polymerase activity. Furthermore, to explore the role of PA in viral replication and transcription, we propose a model for the influenza RdRp heterotrimer by comparing PAC with the 3 reovirus polymerase structure, and docking the PAC structure into an available low resolution electron microscopy map.