全世界大约有10亿人在喝酒后会出现脸红、恶心和心跳加速等现象,这是因为他们携带可造成体内酒精代谢酶——乙醛脱氢酶2(ALDH2)惰性的变异基因。最近,美国研究人员发现了一种可以修复这种有缺陷的酒精代谢酶的试验性化合物。该发现不仅会给那些平时无法饮酒的人带来小饮怡情之乐,也有望大大减少与该种酶缺陷有关的健康问题。相关研究成果发表在《自然·结构与分子生物学》网络版上。
当酒精进入人体后,首先会被代谢成一种可引起DNA损伤的有毒化学物质——乙醛,随后通过ALDH2乙醛被分解为一种无毒的代谢物——乙酸。如果ALDH2有缺陷,不仅会使饮酒变得十分痛苦,而且还可能导致癌症发病率的上升。同时,ALDH2惰性还会降低治疗心绞痛常用药物硝酸甘油的效能。
最近,美国国立卫生研究院下属的全国酒精滥用与酒精中毒研究所(NIAAA)的人员发现,一种名为Alda-1的试验性化合物分子,可有效激活有缺陷的ALDH2。研究人员通过一系列实验,对Alda-1与有缺陷的ALDH2之间的交互作用情况进行了检测。他们发现正常的、活跃的ALDH2都有一个催化通道,乙醛会在此通道中代谢,但在有缺陷的ALDH2中,这个通道不能正常工作。而Alda-1会与有缺陷的ALDH2绑定,有效重启该催化通道,从而使这种酶能够正常代谢乙醛。
研究人员认为,这一发现将对大众健康产生广泛影响。该研究论文的主要作者、美国印第安纳大学医学院生物化学和分子生物学教授托马斯·赫尔利博士指出,Alda-1与ALDH2之间的绑定方式,使研究人员能够更有效地观察活化剂与排毒酶的抑制因子之间的关系,这有助于对Alda-1进行修正,提高其效能;同时,这也有助于设计出一种新的类似物,以便选择性地影响那些通过乙醛脱氢酶解毒的其他分子的新陈代谢机制。(生物谷Bioon.com)
饮酒与健康:
JCBFM:饮酒6分钟后酒精即“上头”
PNAS:酒精易感性的遗传联系
Alcohol:酒精具有免疫调节作用
PNAS:揭示酒精损伤胎儿的路径
Cell:抗癌药物可能也可用于治疗酒精中毒
Am.J.Med:中年人适量饮酒可预防心血管疾病
PNAS:酒精使青春期变得更加疯狂
BMJ:醉酒无方可解
PNAS:出生前接触酒精可增加青春期酒量
BMC Biology:酒精依赖系基因所致
生物谷推荐原始出处:
Nature Structural & Molecular Biology 10 January 2010 | doi:10.1038/nsmb.1737
Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant
Samantha Perez-Miller1, Hina Younus1, Ram Vanam1, Che-Hong Chen2, Daria Mochly-Rosen2 & Thomas D Hurley1
In approximately one billion people, a point mutation inactivates a key detoxifying enzyme, aldehyde dehydrogenase (ALDH2). This mitochondrial enzyme metabolizes toxic biogenic and environmental aldehydes, including the endogenously produced 4-hydroxynonenal (4HNE) and the environmental pollutant acrolein, and also bioactivates nitroglycerin. ALDH2 is best known, however, for its role in ethanol metabolism. The accumulation of acetaldehyde following the consumption of even a single alcoholic beverage leads to the Asian alcohol-induced flushing syndrome in ALDH2*2 homozygotes. The ALDH2*2 allele is semidominant, and heterozygotic individuals show a similar but less severe phenotype. We recently identified a small molecule, Alda-1, that activates wild-type ALDH2 and restores near-wild-type activity to ALDH2*2. The structures of Alda-1 bound to ALDH2 and ALDH2*2 reveal how Alda-1 activates the wild-type enzyme and how it restores the activity of ALDH2*2 by acting as a structural chaperone.
1 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
2 Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA.