英美研究人员在1月31日的《自然》杂志上报告说,他们合作进行的一项最新研究模拟出整合酶的三维结构。整合酶在包括艾滋病病毒等逆转录酶病毒中可以找到,并且充当了艾滋病病毒在人体内复制时的“帮凶”。这项重大突破有助于科学家解决困扰了艾滋病研究领域长达20年的一个难题,从而找到更好的治疗艾滋病的方法。
当艾滋病病毒感染人体时,通常会利用整合酶当工具,将病毒的遗传信息“复制粘贴”到其DNA中,并将病毒DNA与人体DNA整合。很多科学家都曾尝试破解这种与病毒DNA绑定的整合酶的三维结构,结果都无功而返。新的抗逆转录酶病毒药物很多是利用抑制整合酶的功能来达到治疗艾滋病的目的,但科学家们并没有确切了解这些药物发挥作用的机制以及增进药效的机理。
由于只有通过获取质量较多的晶体才能确定整合酶的结构,在此次研究中,帝国理工学院和哈佛大学的研究人员联手,从一种被称为原型泡沫病毒(PFV)的逆转录病毒中“借”来了整合酶,并用其来制造晶体。虽然目前科学界对原型泡沫病毒所知不多,但基于已有认识,研究人员相信,这种版本的整合酶与艾滋病病毒中的整合酶在结构和功能上非常相似。
研究人员在4年中进行了4万多次试验,最终获得了7种晶体,而其中只有一种晶体的质量足够多,使得他们可以确定整合酶的三维结构。利用钻石光源中心的大型同步加速器,研究人员采集了晶体的X射线衍射数据,从而将结构进行测定。并于随后首次观察到这些抗逆转录酶病毒药物如何与整合酶结合并阻断其活性。
这项研究显示,艾滋病病毒中整合酶具有完全不同于之前所预期的结构,其破解意味着科学家自此可以充分了解相关药物的作用原理,以期提高疗效并防止艾滋病病毒产生抗药性。(生物谷Bioon.com)
生物谷推荐原始出处:
Nature advance online publication 31 January 2010 | doi:10.1038/nature08784
Retroviral intasome assembly and inhibition of DNA strand transfer
Stephen Hare1,3, Saumya Shree Gupta1,3,4, Eugene Valkov1,4, Alan Engelman2 & Peter Cherepanov1
1 Division of Medicine, Imperial College London, St-Mary’s Campus, Norfolk Place, London W2 1PG, UK
2 Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA
3 These authors contributed equally to this work.
4 Present addresses: Hannover Biomedical Research School, D-30625 Hannover, Germany (S.S.G.); School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia (E.V.).
Integrase is an essential retroviral enzyme that binds both termini of linear viral DNA and inserts them into a host cell chromosome. The structure of full-length retroviral integrase, either separately or in complex with DNA, has been lacking. Furthermore, although clinically useful inhibitors of HIV integrase have been developed, their mechanism of action remains speculative. Here we present a crystal structure of full-length integrase from the prototype foamy virus in complex with its cognate DNA. The structure shows the organization of the retroviral intasome comprising an integrase tetramer tightly associated with a pair of viral DNA ends. All three canonical integrase structural domains are involved in extensive protein–DNA and protein–protein interactions. The binding of strand-transfer inhibitors displaces the reactive viral DNA end from the active site, disarming the viral nucleoprotein complex. Our findings define the structural basis of retroviral DNA integration, and will allow modelling of the HIV-1 intasome to aid in the development of antiretroviral drugs.