合成生物学的基因回路研究方法利用计算机模拟来设计能在活细胞中发挥功能的小基因网络。
在其首次成功(合成振荡器和拨动开关)不到十年之后的今天,Jeff Hasty 及其同事又通过设计自然的“群体感应”(quorum sensing)基因培养出一批同步的大肠杆菌细胞。 利用微流体和延时荧光显微镜技术,他们试图总结有关控制同步振荡或波传播的因子的普遍规律。这项工作将有助于关于更复杂自然振荡的研究工作。
在这一模型体系中,基因时钟产生了同步的闪光,但类似的基因开关则有可能触发与胰岛素分泌和生物节律等相关的事件。(生物谷Bioon.com)
生物谷推荐原始出处:
Nature 463, 326-330 (21 January 2010) | doi:10.1038/nature08753
A synchronized quorum of genetic clocks
Tal Danino1,4, Octavio Mondragón-Palomino1,4, Lev Tsimring2 & Jeff Hasty1,2,3
1 Department of Bioengineering,
2 BioCircuits Institute, University of California, San Diego, La Jolla, California 92093, USA
3 Molecular Biology Section, Division of Biological Science, University of California, Mailcode 0368, La Jolla, California 92093, USA
4 These authors contributed equally to this work.
The engineering of genetic circuits with predictive functionality in living cells represents a defining focus of the expanding field of synthetic biology. This focus was elegantly set in motion a decade ago with the design and construction of a genetic toggle switch and an oscillator, with subsequent highlights that have included circuits capable of pattern generation, noise shaping, edge detection and event counting. Here we describe an engineered gene network with global intercellular coupling that is capable of generating synchronized oscillations in a growing population of cells. Using microfluidic devices tailored for cellular populations at differing length scales, we investigate the collective synchronization properties along with spatiotemporal waves occurring at millimetre scales. We use computational modelling to describe quantitatively the observed dependence of the period and amplitude of the bulk oscillations on the flow rate. The synchronized genetic clock sets the stage for the use of microbes in the creation of a macroscopic biosensor with an oscillatory output. Furthermore, it provides a specific model system for the generation of a mechanistic description of emergent coordinated behaviour at the colony level.