近日,伊利诺大学的科学家设计了一种合成蛋白,其是原生蛋白-一氧化氮还原酶的结构和功能模型。
这种设计的蛋白,为一氧化氮还原酶研究和生物催化剂生产提供了一个很好的模型系统,能够用于生物技术,环境和制药等不同领域。这项研究的负责人伊利诺大学的化学教授Yi Lu介绍说。
通过合理设计的模型,研究人员能够理解原生蛋白,并有可能生成更有效,结构更稳固或功能更多的蛋白。
然而,生成结构和功能相似的蛋白需要经过相当复杂的过程。Lu的研究团队,首次设计了一种合成蛋白,其能够模仿一种金属蛋白的结构和功能。这项研究结果发布在11月25日Nature的在线版本上。
一氧化氮还原酶是氮循环中的一种关键酶。一氧化氮在细胞信号传导和宿主病原体应答过程中具有重要作用。因此,一氧化氮还原酶的研究是理解这些生理和病理过程的前提。(生物谷Bioon.com)
生物谷推荐原始出处:
Nature 462, 113-116 (5 November 2009) | doi:10.1038/nature08551
Rationally tuning the reduction potential of a single cupredoxin beyond the natural range
Nicholas M. Marshall1, Dewain K. Garner1, Tiffany D. Wilson1, Yi-Gui Gao1, Howard Robinson2, Mark J. Nilges1 & Yi Lu1
1 Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801, USA
2 Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
Correspondence to: Yi Lu1 Correspondence and requests for materials should be addressed to Y.L.
Redox processes are at the heart of numerous functions in chemistry and biology, from long-range electron transfer in photosynthesis and respiration to catalysis in industrial and fuel cell research. These functions are accomplished in nature by only a limited number of redox-active agents. A long-standing issue in these fields is how redox potentials are fine-tuned over a broad range with little change to the redox-active site or electron-transfer properties. Resolving this issue will not only advance our fundamental understanding of the roles of long-range, non-covalent interactions in redox processes, but also allow for design of redox-active proteins having tailor-made redox potentials for applications such as artificial photosynthetic centres1, 2 or fuel cell catalysts3 for energy conversion. Here we show that two important secondary coordination sphere interactions, hydrophobicity and hydrogen-bonding, are capable of tuning the reduction potential of the cupredoxin azurin over a 700 mV range, surpassing the highest and lowest reduction potentials reported for any mononuclear cupredoxin, without perturbing the metal binding site beyond what is typical for the cupredoxin family of proteins. We also demonstrate that the effects of individual structural features are additive and that redox potential tuning of azurin is now predictable across the full range of cupredoxin potentials.