生物谷:我国二硫键蛋白质组学的研究取得新突破。近日出版的《美国科学院院刊》(PNAS),发表了华东理工大学生物反应器工程国家重点实验室及药学院教授杨弋、哈佛大学医学院教授Joseph Loscalzo合作完成的论文《哺乳动物细胞中线粒体对二硫键蛋白质组的调节》。
这项研究成果,对了解二硫键的形成及其对生命的调控,以及相关重大疾病机制研究与治疗具有重要意义。
两位审稿人对该研究结果给予肯定评价:“论文作者建立了一个新的并且十分有效的方法来对细胞内二硫键进行成像,并发现线粒体产生的活性氧分子直接参与了细胞表面的二硫键形成。该研究非常重要,实验工作十分详尽并令人印象深刻。该研究将改变我们对线粒体在基于二硫键的信号转导和蛋白质折叠的理解。”“作者首次漂亮地显示了线粒体来源的活性氧参与细胞表面蛋白质二硫键形成,并通过这一新机制调节了这些蛋白质的折叠与转运。”
据专家介绍,二硫键是指蛋白质内两个半胱氨酸残基之间自然形成的桥键,其形成是细胞内蛋白质合成过程中的一个关键步骤。然而,长期以来人们一直不能直接在细胞内观察二硫键的形成,有关二硫键蛋白质组的形成与细胞功能关系的研究领域进展缓慢。针对这一关键技术的国际空白,杨弋建立了一种灵敏、特异性的荧光标记方法,首次通过成像方法成功观察到细胞内二硫键的位置与水平。利用这种方法,他们在细胞对蛋白质二硫键的调控研究上获得突破性进展,发现伴随线粒体呼吸产生的活性氧被细胞利用形成细胞表面蛋白质中的二硫键。而线粒体这一细胞“能量工厂”功能的改变,可以影响二硫键的水平,进而调节这些蛋白质的折叠、转运及功能。
长期以来,人们通常认为二硫键是固定的、结构性的蛋白质化学修饰,而不像蛋白质磷酸化那样高度动态,并且参与细胞信号转导、调节细胞功能。但近期研究发现,少数定位在还原性的细胞浆中的蛋白质也会受细胞氧化还原状态影响形成暂时的二硫键,从而影响蛋白质功能与细胞性状。杨弋等的研究将这种调节性二硫键的范围,扩展到最主要的二硫键蛋白质组,即细胞分泌途径蛋白质组。(科学时报)
原始出处:
Published online before print June 20, 2007, 10.1073/pnas.0702027104
PNAS | June 26, 2007 | vol. 104 | no. 26 | 10813-10817
Regulation of the protein disulfide proteome by mitochondria in mammalian cells
Yi Yang*,, Yanli Song*, and Joseph Loscalzo*,
*Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Edited by Pedro M. Cuatrecasas, University of California at San Diego School of Medicine, Rancho Santa Fe, CA, and approved April 27, 2007 (received for review March 5, 2007)
The majority of protein disulfides in cells is considered an important inert structural, rather than a dynamic regulatory, determinant of protein function. Here, we show that some disulfides in proteins also are regulated by cell redox status with functional consequences. We find that reactive oxygen species (ROS) produced by mitochondria are actively used by cells to facilitate cell-surface protein disulfide formation, as well as folding and transport, in mammalian cells. Inhibition of mitochondrial ROS production suppresses protein disulfide formation and induces reductive stress, leading to dysfunction and retention (possibly in the Golgi, in part) of a group of cell-surface disulfide-containing proteins. Sparsely cultured cells produce less ROS than confluent cells do, which leads to decreased disulfide formation and decreased activity of a subgroup of disulfide-containing cell-surface receptors. These data support the concept of two subproteomes comprising the disulfide proteome, a structural group and a redox-sensitive regulatory group, with the latter having direct functional consequences for the cell.
oxidative stress | redox potential | reactive oxygen species | protein thiol