通过100余位科学家的努力,衣藻(一种单细胞土生藻类)的基因组已经基本测定完成。在10月12日的《科学》杂志上,研究人员发表了他们对莱氏衣藻(Chlamydomonas reinhardtii)基因组的分析报告。研究人员在衣藻基因组中发现了动植物早期进化的线索,尤其是在光合作用和鞭毛进化方面。
由于它很强的适应性和较短的繁殖周期,长期以来,衣藻是科学研究的重要模型之一。几年前,科学家对衣藻基因组的认识不到全部序列的2%,而最新的研究已经将这一数字提高到了95%。同时,新的研究表明,衣藻基因数量在1万5千个左右,其中包含了大量关于现代动植物祖先的信息。
论文作者之一、美国卡内基学院(Carnegie Institution)的Arthur Grossman表示,“研究衣藻基因组就像逛思维的‘糖果店’。我们能够知道生物祖先的情况,鞭毛的进化和功能,以及它们不同的蛋白如何与人类疾病相关。此外,我们还能确定影响光合作用的未知基因类别。”
在测定衣藻基因组及追溯其进化历史后,研究人员还将衣藻与其他生物的基因组进行了对比,比如人类和开花植物。结果发现,三者有35%的基因是共有的,仅衣藻与人类基因组共有的为45%,而仅衣藻与开花植物共有的为62%。
研究发现,大部分与植物光合作用相关的基因在衣藻中都能找到,这证实了衣藻的光合作用机制与植物十分相似的认识。藉此,研究人员还确定了为衣藻、开花植物以及其他藻类所共有、却不存在于非光合作用生物体内的蛋白家族。
此外,新的研究还确定了与衣藻鞭毛(flagella)相关的蛋白,这有望加深科学家对人类大脑等部位的纤毛(cilia,细小的细胞器,用于提供移动力或者感知周围环境,是人类实现大脑功能和新陈代谢所必需的)的理解和认识,并为纤毛缺损导致的人类疾病研究开辟新的途径。(科学网 任霄鹏/编译)
原始出处:
Science 12 October 2007:
Vol. 318. no. 5848, pp. 245 - 250
DOI: 10.1126/science.1143609
The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions
Sabeeha S. Merchant,1* Simon E. Prochnik,2* Olivier Vallon,3 Elizabeth H. Harris,4 Steven J. Karpowicz,1 George B. Witman,5 Astrid Terry,2 Asaf Salamov,2 Lillian K. Fritz-Laylin,6 Laurence Maréchal-Drouard,7 Wallace F. Marshall,8 Liang-Hu Qu,9 David R. Nelson,10 Anton A. Sanderfoot,11 Martin H. Spalding,12 Vladimir V. Kapitonov,13 Qinghu Ren,14 Patrick Ferris,15 Erika Lindquist,2 Harris Shapiro,2 Susan M. Lucas,2 Jane Grimwood,16 Jeremy Schmutz,16 Pierre Cardol,3,17 Heriberto Cerutti,18 Guillaume Chanfreau,1 Chun-Long Chen,9 Valérie Cognat,7 Martin T. Croft,19 Rachel Dent,20 Susan Dutcher,21 Emilio Fernández,22 Hideya Fukuzawa,23 David González-Ballester,24 Diego González-Halphen,25 Armin Hallmann,26 Marc Hanikenne,17 Michael Hippler,27 William Inwood,20 Kamel Jabbari,28 Ming Kalanon,29 Richard Kuras,3 Paul A. Lefebvre,11 Stéphane D. Lemaire,30 Alexey V. Lobanov,31 Martin Lohr,32 Andrea Manuell,33 Iris Meier,34 Laurens Mets,35 Maria Mittag,36 Telsa Mittelmeier,37 James V. Moroney,38 Jeffrey Moseley,24 Carolyn Napoli,39 Aurora M. Nedelcu,40 Krishna Niyogi,20 Sergey V. Novoselov,31 Ian T. Paulsen,14 Greg Pazour,41 Saul Purton,42 Jean-Philippe Ral,43 Diego Mauricio Riaño-Pachón,44 Wayne Riekhof,45 Linda Rymarquis,46 Michael Schroda,47 David Stern,48 James Umen,15 Robert Willows,49 Nedra Wilson,50 Sara Lana Zimmer,48 Jens Allmer,51 Janneke Balk,19 Katerina Bisova,52 Chong-Jian Chen,9 Marek Elias,53 Karla Gendler,39 Charles Hauser,54 Mary Rose Lamb,55 Heidi Ledford,20 Joanne C. Long,1 Jun Minagawa,56 M. Dudley Page,1 Junmin Pan,57 Wirulda Pootakham,24 Sanja Roje,58 Annkatrin Rose,59 Eric Stahlberg,34 Aimee M. Terauchi,1 Pinfen Yang,60 Steven Ball,61 Chris Bowler,28,62 Carol L. Dieckmann,37 Vadim N. Gladyshev,31 Pamela Green,46 Richard Jorgensen,39 Stephen Mayfield,33 Bernd Mueller-Roeber,44 Sathish Rajamani,63 Richard T. Sayre,34 Peter Brokstein,2 Inna Dubchak,2 David Goodstein,2 Leila Hornick,2 Y. Wayne Huang,2 Jinal Jhaveri,2 Yigong Luo,2 Diego Martínez,2 Wing Chi Abby Ngau,2 Bobby Otillar,2 Alexander Poliakov,2 Aaron Porter,2 Lukasz Szajkowski,2 Gregory Werner,2 Kemin Zhou,2 Igor V. Grigoriev,2 Daniel S. Rokhsar,2,6 Arthur R. Grossman24
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
1 Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA.
2 U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA 94598, USA.
3 CNRS, Université Paris 6, Institut de Biologie Physico-Chimique, 75005 Paris, France.
4 Department of Biology, Duke University, Durham, NC 27708, USA.
5 Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
6 Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
7 Institut de Biologie Moléculaire des Plantes, CNRS, 67084 Strasbourg Cedex, France.
8 Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA.
9 Biotechnology Research Center, Zhongshan University, Guangzhou 510275, China.
10 Department of Molecular Sciences and Center of Excellence in Genomics and Bioinformatics, University of Tennessee, Memphis, TN 38163, USA.
11 Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA.
12 Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA.
13 Genetic Information Research Institute, Mountain View, CA 94043, USA.
14 The Institute for Genomic Research, Rockville, MD 20850, USA.
15 Plant Biology Laboratory, Salk Institute, La Jolla, CA 92037, USA.
16 Stanford Human Genome Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
17 Plant Biology Institute, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium.
18 University of Nebraska-Lincoln, School of Biological Sciences–Plant Science Initiative, Lincoln, NE 68588, USA.
19 Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
20 Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
21 Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
22 Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain.
23 Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
24 Department of Plant Biology, Carnegie Institution, Stanford, CA 94306, USA.
25 Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510 DF, Mexico.
26 Department of Cellular and Developmental Biology of Plants, University of Bielefeld, D-33615 Bielefeld, Germany.
27 Department of Biology, Institute of Plant Biochemistry and Biotechnology, University of Münster, 48143 Münster, Germany.
28 CNRS UMR 8186, Département de Biologie, Ecole Normale Supérieure, 75230 Paris, France.
29 Plant Cell Biology Research Centre, The School of Botany, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
30 Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Orsay, France.
31 Department of Biochemistry, N151 Beadle Center, University of Nebraska, Lincoln, NE 68588–0664, USA.
32 Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099 Mainz, Germany.
33 Department of Cell Biology and Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037, USA.
34 PCMB and Plant Biotechnology Center, Ohio State University, Columbus, OH 43210, USA.
35 Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
36 Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany.
37 Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
38 Department of Biological Science, Louisiana State University, Baton Rouge, LA 70803, USA.
39 Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
40 Department of Biology, University of New Brunswick, Fredericton, NB, Canada E3B 6E1.
41 Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
42 Department of Biology, University College London, London WC1E 6BT, UK.
43 Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS/USTL, IFR 118, Université des Sciences et Technologies de Lille, Cedex, France.
44 Universität Potsdam, Institut für Biochemie und Biologie, D-14476 Golm, Germany.
45 Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA.
46 Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
47 Institute of Biology II/Plant Biochemistry, 79104 Freiburg, Germany.
48 Boyce Thompson Institute for Plant Research at Cornell University, Ithaca, NY 14853, USA.
49 Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney 2109, Australia.
50 Department of Anatomy and Cell Biology, Oklahoma State University, Center for Health Sciences, Tulsa, OK 74107, USA.
51 Izmir Ekonomi Universitesi, 35330 Balcova-Izmir Turkey.
52 Institute of Microbiology, Czech Academy of Sciences, Czech Republic.
53 Department of Plant Physiology, Faculty of Sciences, Charles University, 128 44 Prague 2, Czech Republic.
54 Bioinformatics Program, St. Edward's University, Austin, TX 78704, USA.
55 Department of Biology, University of Puget Sound, Tacoma, WA 98407, USA.
56 Institute of Low-Temperature Science, Hokkaido University, 060-0819, Japan.
57 Department of Biology, Tsinghua University, Beijing, China 100084.
58 Institute of Biological Chemistry, Washington State University, Pullman, WA99164, USA.
59 Appalachian State University, Boone, NC 28608, USA.
60 Department of Biology, Marquette University, Milwaukee, WI 53233, USA.
61 UMR8576 CNRS, Laboratory of Biological Chemistry, 59655 Villeneuve d'Ascq, France.
62 Cell Signaling Laboratory, Stazione Zoologica, I 80121 Naples, Italy.
63 Graduate Program in Biophysics, Ohio State University, Columbus, OH 43210, USA.
* These authors contributed equally to this work.
To whom correspondence should be addressed. E-mail: dsrokhsar@lbl.gov (D.S.R.); arthurg@stanford.edu (A.R.G.)