一只名为“肉桂”(Cinnamon)的4岁雌性阿比西尼亚猫有幸成为第一只完成基因组测序草图的猫。它也因此加入了包括狗、小鼠、大鼠以及黑猩猩等在内的基因组“俱乐部”。相关论文11月1日在线发表于《基因组研究》(Genome Research)杂志上。
该测序工作得到的还是一个粗略的草图——仅包含“肉桂”60%的全基因序列(A,C,T,G),其间还有很多空缺。尽管所得的结果并不完美,但领导研究的美国国立癌症研究所(NCI)的遗传学家Stephen O’Brien表示,错误的几率不会超过1%。
值得一提的是,该研究仅花费了1000万美元,而所获得的数据对一些类型的研究而言,已经足够好了。O’Brien表示,该项研究的策略应该成为在缺乏足够支持的情况下,进行基因组测序的典范。
毫无疑问,新的测序工作将促进与猫类特征和疫病相关的基因研究。比如,今年早些时候,根据当时的测序结果,O’Brien小组发现了一个与“肉桂”幼年失明相关的基因突变,它在阿比西尼亚猫中十分普遍,会造成一种名为色素性视网膜炎(retinitis pigmentosa)的疾病。
通过将很长的DNA序列分割成较小的片断并用机器进行解码,研究人员得到了猫的基因组图。不过,这种方法很容易遗失掉一些部分。为了保证研究覆盖到整个基因组,科学家往往会对全基因组片断进行多次测序,由于每次测序的分割位置可能不同,因此这种方法最大程度上保证了遗传信息的完整。
具体到对“肉桂”的研究,科学家共测定了大约50亿个碱基对,这一数字是它具有27亿个碱基对的基因组的1.9倍。与此相比,人类基因组测序了7倍,狗的基因组测序达到了7.5倍。
在此之后,研究人员还要将测定的序列按原先的顺序排列起来,一般情况下,只要通过不同片断序列交叠的部分就能够进行重新组合,但对于此次研究来说,猫的基因序列交叠部分太少了,因此难度很大。作为一种“捷径”,O’Brien和NCI的生物信息学家Joan Pontius依照狗和人类基因组的相似部分,将猫较短的DNA片断排列了起来。这种方法大大节省了他们的时间和劳动。
该研究小组一共鉴别出20285个基因,并得到3.27万个单碱基差异的图谱。这些信息目前可以开放获取:http://lgd.abcc.ncifcrf.gov/
由于猫是科学家研究人类失明和艾滋病的模型之一,因此,新的测序结果可能大有用处。不过,一些科学家认为,随着基因测序成本的不断降低,获得物种的基因草图并没有多少亮点。美国马里兰大学的计算生物学家Steven Salzberg表示,“这就好比读一本书,但你只能读到每句话的一半。”
不过,明年早些时候Salzberg的愿望可能就会实现,因为到那时,一份完整的“肉桂”基因组将会出炉,它可能要比狗的基因测序结果更加完美。
密苏里州的一只阿比西尼亚的猫西纳蒙(Cinnamon)刚刚书写了科学史:研究人员已基本解码了它的DNA,这一步可能有助于研究猫科动物和人类疾病的治疗。在此之前,科学家已经解码了差不多二十多种哺乳动物的DNA,其中包括狗、黑猩猩、小老鼠、田鼠、母牛,当然还有人。
研究人员为什么要解码猫的DNA呢?他们表示,猫会患与人类疾病相似的200多种疾病,了解它们的基因结构的详细情况应该有助于研制疫苗,进行相关治疗。美国国家癌症研究所的斯蒂芬·奥布里恩表示,这份疾病名单猫版的艾滋病、非典型肺炎、糖尿病、视网膜疾病和脊柱裂等。
休斯敦贝勒医学院(Baylor College of Medicine)领导解码猕猴DNA小组的理查德·吉布斯将这项新工作称为猫DNA的“很好的构图”。科学家们正期待完成猫的全部的基因图谱,它将被拿来与其他动物的DNA作详细对比。一种生物DNA的全部基因被称作它的基因组。在猫身上,就像在人身上一样,它由将近30亿基因块组成。
这些基因块的序列清楚地说明了遗传信息,正如字母串组成句子一样。解码一个基因组叫做测序,意味着确定了这些基因块的顺序。奥布里恩表示,这项新工作确定了猫的20285个基因,可能是猫全部基因的95%左右。这与人类的20000到25000个基因相似。
原始出处:
Genome Res. 17:1675-1689, 2007
Initial sequence and comparative analysis of the cat genome
Joan U. Pontius1,17, James C. Mullikin2, Douglas R. Smith3, Agencourt Sequencing Team3,16, Kerstin Lindblad-Toh4, Sante Gnerre4, Michele Clamp4, Jean Chang4, Robert Stephens5, Beena Neelam5, Natalia Volfovsky5, Alejandro A. Schäffer6, Richa Agarwala6, Kristina Narfström7, William J. Murphy8, Urs Giger9, Alfred L. Roca1, Agostinho Antunes10,11,12, Marilyn Menotti-Raymond10, Naoya Yuhki10, Jill Pecon-Slattery10, Warren E. Johnson10, Guillaume Bourque13, Glenn Tesler14, NISC Comparative Sequencing Program15, and Stephen J. O’Brien10,17
1 Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA; 2 Comparative Genomics Unit, National Human Genome Research Institute, Rockville, Maryland 20892, USA; 3 Agencourt Bioscience Corporation, Beverly, Massachusetts 01915, USA; 4 Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141, USA; 5 Advanced Biomedical Computing Center, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA; 6 National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, Maryland 20894, USA; 7 Department of Ophthalmology (Mason Eye Institute), Department of Veterinary Medicine & Surgery, University of Missouri–Columbia, Columbia, Missouri 65211, USA; 8 Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA; 9 Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; 10 Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland 21702, USA; 11 REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; 12 CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal; 13 Genome Institute of Singapore, Singapore 138672, Republic of Singapore; 14 Department of Mathematics, University of California, San Diego, California 92093-0112, USA; 15 NISC, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing 65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence.