本期Nature发表了高粱(Sorghum bicolour)的基因组序列。
高粱是一种谷物,作为粮食、饲料、纤维和燃料作物广泛种植。它耐热、耐旱,是西非萨赫勒地区很多人口的一种主食作物。将该基因组与玉米和水稻的基因组所做的对比,为了解草本及C4植物光合作用(这种光合作用在高温时尤其能够高效吸收碳)的演化提供了线索。另外,可能对高粱的抗旱性能有贡献的蛋白编码基因及miRNAs也可能被找到。高粱产量的提高一直落后于其他作物,其基因组序列的获得有可能为该作物的改良产生非常重要的促进作用。(生物谷Bioon.com)
生物谷推荐原始出处:
Nature 457, 551-556 (29 January 2009) | doi:10.1038/nature07723;
The Sorghum bicolor genome and the diversification of grasses
Andrew H. Paterson1, John E. Bowers1, Rémy Bruggmann2, Inna Dubchak3, Jane Grimwood4, Heidrun Gundlach5, Georg Haberer5, Uffe Hellsten3, Therese Mitros6, Alexander Poliakov3, Jeremy Schmutz4, Manuel Spannagl5, Haibao Tang1, Xiyin Wang1,7, Thomas Wicker8, Arvind K. Bharti2, Jarrod Chapman3, F. Alex Feltus1,9, Udo Gowik10, Igor V. Grigoriev3, Eric Lyons11, Christopher A. Maher12, Mihaela Martis5, Apurva Narechania12, Robert P. Otillar3, Bryan W. Penning13, Asaf A. Salamov3, Yu Wang5, Lifang Zhang12, Nicholas C. Carpita14, Michael Freeling11, Alan R. Gingle1, C. Thomas Hash15, Beat Keller8, Patricia Klein16, Stephen Kresovich17, Maureen C. McCann13, Ray Ming18, Daniel G. Peterson1,19, Mehboob-ur-Rahman1,20, Doreen Ware12,21, Peter Westhoff10, Klaus F. X. Mayer5, Joachim Messing2 & Daniel S. Rokhsar3,4
1 Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA
2 Waksman Institute for Microbiology, Rutgers University, Piscataway, New Jersey 08854, USA
3 DOE Joint Genome Institute, Walnut Creek, California 94598, USA
4 Stanford Human Genome Center, Stanford University, Palo Alto, California 94304, USA
5 MIPS/IBIS, Helmholtz Zentrum München, Inglostaedter Landstrasse 1, 85764 Neuherberg, Germany
6 Center for Integrative Genomics, University of California, Berkeley, California 94720, USA
7 College of Sciences, Hebei Polytechnic University, Tangshan, Hebei 063000, China
8 Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
9 Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631, USA
10 Institut fur Entwicklungs und Molekularbiologie der Pflanzen, Heinrich-Heine-Universitat, Universitatsstrasse 1, D-40225 Dusseldorf, Germany
11 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
12 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
13 Department of Biological Sciences,
14 Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
15 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, India
16 Department of Horticulture and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA
17 Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
18 Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
19 Mississippi Genome Exploration Laboratory, Mississippi State University, Starkville, Mississippi 39762, USA
20 National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
21 USDA NAA Robert Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the 730-megabase Sorghum bicolor (L.) Moench genome, placing 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization 70 million years ago, most duplicated gene sets lost one member before the sorghum–rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.