11月1日,《自然—遗传学》(Nature Genetics)杂志在线发表了世界第一个蔬菜作物的基因组测序和分析的重要论文。这是由我国科学家发起和主导的国际黄瓜基因组计划第一阶段所取得的重大成果,对黄瓜和其它瓜类作物的遗传改良、基础生物学研究、以及对植物维管束系统的功能和进化研究将发挥重要的推动作用。黄瓜基因组论文是《自然—遗传学》至今为止发表的为数不多的植物学论文之一。
国际黄瓜基因组计划由中国农业科学院蔬菜花卉研究所于2007年初发起并组织,由深圳华大基因研究院承担基因组测序和组装等技术工作。参与单位包括中国农大、北京师大、美国康乃尔大学、威斯康星大学和加州大学戴维斯分校、荷兰瓦赫宁根大学以及澳大利亚多态性芯片技术中心。这是由我国发起的第一个多边合作的大型植物基因组计划。
黄瓜基因组共有约3.5亿个碱基对。项目采用了新一代测序技术,自主开发了一套全新的序列拼接软件,成功地以较低的成本绘制了黄瓜基因组的精细图。这一套测序策略已经成为了其它植物基因组测序的模式。
在黄瓜基因组中共发现了26,682个基因。项目创建了包含1800个分子标记的高密度遗传图谱,把基因组的20000多个基因定位在染色体上,这给重要经济性状基因的克隆带来了极大的便利。目前已经发现了与黄瓜产量、品质、抗病性等重要农艺性状相关的候选基因300多个,已经克隆了与产量相关的性别决定基因(和上海交大合作)、苦味基因和抗黑星病基因,为这些重要性状的分子育种提供了快捷准确的工具。
黄瓜有7条染色体,而甜瓜有12条染色体。本研究表明:黄瓜7条染色体中的5条是由甜瓜的12条染色体中的10条两两融合而成的,这一发现解决了葫芦科染色体进化上一个多年未解的难题。在基因区域,黄瓜和甜瓜有95%的相似性,和西瓜也有超过90%的相似性。我国瓜类作物的栽培面积在4000万亩以上,黄瓜的基因组序列将推动所有瓜类作物的生物学研究和遗传育种。
植物的维管束系统相当于人体的血管,是植物营养运输和长距离信号传导的主要通道。黄瓜是维管束研究的模式系统。黄瓜基因组研究首次揭示了800个与维管束功能相关的基因,并且发现它们所在的基因家族在低等植物向高等植物进化的过程中得到了扩增。
在基因组测序完成的基础上,国际黄瓜基因组计划进入下一个阶段,将系统地研究黄瓜种质资源的遗传多样性和黄瓜基因表达及调控的特性,将克隆主要的经济性状基因,开发廉价快捷的分子育种工具,推动基因组的研究成果直接应用到优良新品种的培育上。(生物谷Bioon.com)
其他物种基因组研究:
Science:家蚕基因组测序成功
Nature:马铃薯晚疫病病菌基因组测序完成
PLoS ONE:绘制出首张黄瓜基因组图谱
PLoS Biology:老鼠全基因组测序图公布
Nature:高粱基因组完成测序
Nature Biotechnology:测出植物寄生型线虫基因组序列
Nature:三角褐指藻基因组完成测序
更多基因组信息。。。
生物谷推荐原始出处:
Nature Genetics 1 November 2009 | doi:10.1038/ng.475
The genome of the cucumber, Cucumis sativus L.
Sanwen Huang1,19, Ruiqiang Li2,3,19, Zhonghua Zhang1,19, Li Li2,19, Xingfang Gu1,19, Wei Fan2,19, William J Lucas4,19, Xiaowu Wang1, Bingyan Xie1, Peixiang Ni2, Yuanyuan Ren2, Hongmei Zhu2, Jun Li2, Kui Lin5, Weiwei Jin6, Zhangjun Fei7, Guangcun Li8, Jack Staub9, Andrzej Kilian10, Edwin A G van der Vossen11, Yang Wu5, Jie Guo5, Jun He1, Zhiqi Jia1, Yi Ren1, Geng Tian2, Yao Lu2, Jue Ruan2,12, Wubin Qian2, Mingwei Wang2, Quanfei Huang2, Bo Li2, Zhaoling Xuan2, Jianjun Cao2, Asan2, Zhigang Wu2, Juanbin Zhang2, Qingle Cai2, Yinqi Bai2, Bowen Zhao13, Yonghua Han6, Ying Li1, Xuefeng Li1, Shenhao Wang1, Qiuxiang Shi1, Shiqiang Liu1, Won Kyong Cho14, Jae-Yean Kim14, Yong Xu15, Katarzyna Heller-Uszynska10, Han Miao1, Zhouchao Cheng1, Shengping Zhang1, Jian Wu1, Yuhong Yang1, Houxiang Kang1, Man Li1, Huiqing Liang2, Xiaoli Ren2, Zhongbin Shi2, Ming Wen2, Min Jian2, Hailong Yang2, Guojie Zhang2,12, Zhentao Yang2, Rui Chen2, Shifang Liu2, Jianwen Li2, Lijia Ma2,12, Hui Liu2, Yan Zhou2, Jing Zhao2, Xiaodong Fang2, Guoqing Li2, Lin Fang2, Yingrui Li2,12, Dongyuan Liu2, Hongkun Zheng2,3, Yong Zhang2, Nan Qin2, Zhuo Li2, Guohua Yang2, Shuang Yang2, Lars Bolund2,16, Karsten Kristiansen17, Hancheng Zheng2,18, Shaochuan Li2,18, Xiuqing Zhang2, Huanming Yang2, Jian Wang2, Rifei Sun1, Baoxi Zhang1, Shuzhi Jiang1, Jun Wang2,17, Yongchen Du1 & Songgang Li2
Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequencing technologies to obtain 72.2-fold genome coverage. The absence of recent whole-genome duplication, along with the presence of few tandem duplications, explains the small number of genes in the cucumber. Our study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides a valuable resource for developing elite cultivars and for studying the evolution and function of the plant vascular system.
1 Key Laboratory of Horticultural Crops Genetic Improvement of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics Technology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
BGI-Shenzhen, Shenzhen, China.
2 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
3 Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA.
4 College of Life Sciences, Beijing Normal University, Beijing, China.
5 National Maize Improvement Center of China, Key Laboratory of Crop Genetic Improvement and Genome of Ministry of Agriculture, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
6 Boyce Thompson Institute and USDA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, USA.
7 High-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.
8 US Department of Agriculture, Agricultural Research Service, Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin, Madison, Wisconsin, USA.
9 Diversity Arrays Technology, Canberra, Australia.
10 Wageningen UR Plant Breeding, Wageningen, The Netherlands.
11 The Graduate University of Chinese Academy of Sciences, Beijing, China.
12 High School Affiliated to Renmin University of China, Beijing, China.
13 Division of Applied Life Science (BK21 and WCU program), PMBBRC and EB-NCRC, Gyeongsang National University, Jinju, Republic of Korea.
14 National Engineering Research Center for Vegetables, Beijing, China.
15 Institute of Human Genetics, University of Aarhus, Aarhus, Denmark.
16 Department of Biology, University of Copenhagen, Copenhagen, Denmark.
17 South China University of Technology, Guangzhou, China.
18 These authors contributed equally to this work.