一个国际科研小组日前完成了水螅基因组的测序工作,相关成果3月14日公布在英国《自然》Nature杂志网络版上。
水螅是一种腔肠动物,大多雌雄同体,通常进行无性生殖,夏初或秋末进行有性生殖。测序结果显示,水螅基因数目与人类基因相似,二者也分享了诸多相同基因。令科学家们惊讶的是,水螅也存在与亨廷顿舞蹈症以及阿尔茨海默氏症相关的基因,这表明,水螅将来可能成为研究这两种疾病的模型。
亨廷顿舞蹈症是一种遗传性脑病,症状表现为舞蹈性运动以及认知和行为障碍。阿尔茨海默氏症是较常见的老年痴呆症,临床表现为认知、记忆和语言功能出现障碍。两种疾病目前都无有效疗法。
水螅基因组测序项目24年启动,研究资金由美国国家人类基因组研究所提供。参与测序工作的加州大学欧文分校罗伯特·斯蒂尔表示:“完成水螅基因组测序也提高了我们利用水螅进一步研究干细胞基本生物学特征的能力,后者在治疗损伤和疾病方面具有巨大潜力。”(生物谷Bioon.com)
相关阅读
Science:首个家庭基因组测绘完成
深圳华大基因研究院领衔完成第一张蒙古人基因组图谱
Nature:新一代合成法成功绘制大熊猫基因组图谱
Science:玉米B73系基因组序列
PLoS Biology:成功绘制出蚜虫基因组图谱
Science:家蚕基因组测序成功
生物谷推荐原文出处:
Nature advance online publication 14 March 2010 | doi:10.1038/nature08830
The dynamic genome of Hydra
Jarrod A. Chapman1,21, Ewen F. Kirkness2,21, Oleg Simakov3,4,21, Steven E. Hampson5,22, Therese Mitros4, Thomas Weinmaier6, Thomas Rattei6, Prakash G. Balasubramanian3, Jon Borman2, Dana Busam2, Kathryn Disbennett2, Cynthia Pfannkoch2, Nadezhda Sumin2, Granger G. Sutton2, Lakshmi Devi Viswanathan2, Brian Walenz2, David M. Goodstein1, Uffe Hellsten1, Takeshi Kawashima4, Simon E. Prochnik1, Nicholas H. Putnam1,4,23, Shengquiang Shu1, Bruce Blumberg7,8, Catherine E. Dana8,9, Lydia Gee7,8, Dennis F. Kibler5, Lee Law7,8, Dirk Lindgens7,8, Daniel E. Martinez10, Jisong Peng7,8, Philip A. Wigge11,23, Bianca Bertulat3, Corina Guder3, Yukio Nakamura3, Suat Ozbek3, Hiroshi Watanabe3, Konstantin Khalturin12, Georg Hemmrich12, André Franke12, René Augustin12, Sebastian Fraune12, Eisuke Hayakawa13, Shiho Hayakawa13, Mamiko Hirose13, Jung Shan Hwang13, Kazuho Ikeo13, Chiemi Nishimiya-Fujisawa13, Atshushi Ogura13,23, Toshio Takahashi14, Patrick R. H. Steinmetz15, Xiaoming Zhang16, Roland Aufschnaiter17, Marie-Kristin Eder17, Anne-Kathrin Gorny17,23, Willi Salvenmoser17, Alysha M. Heimberg18, Benjamin M. Wheeler19, Kevin J. Peterson18, Angelika B?ttger20, Patrick Tischler6, Alexander Wolf20, Takashi Gojobori13, Karin A. Remington2,23, Robert L. Strausberg2, J. Craig Venter2, Ulrich Technau15, Bert Hobmayer17, Thomas C. G. Bosch12, Thomas W. Holstein3, Toshitaka Fujisawa13, Hans R. Bode7,8, Charles N. David20, Daniel S. Rokhsar1,4 & Robert E. Steele8,9
The freshwater cnidarian Hydra was first described in 17021 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals2. Today, Hydra is an important model for studies of axial patterning3, stem cell biology4 and regeneration5. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis 6 and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann–Mangold organizer, pluripotency genes and the neuromuscular junction.
1 US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
2 The J. Craig Venter Institute, Rockville, Maryland 20850, USA
Institute of Zoology, Department of Molecular Evolution and Genomics, University of Heidelberg, D-69120 Heidelberg, Germany
Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
Department of Computer Science, University of California, Irvine, California 92697-3435, USA
Department of Genome-Oriented Bioinformatics, Technische Universit?t München, D-85354 Freising, Germany
Department of Developmental and Cell Biology,
Developmental Biology Center, University of California, Irvine, California 92697-2275, USA
Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
Department of Biology, Pomona College, Claremont, California 91711, USA
The Salk Institute, La Jolla, California 92037, USA
Zoologisches Institüt, Christian-Albrechts-University, D-24098 Kiel, Germany
National Institute of Genetics, Yata 1, 111, Mishima 411-8540, Japan
Suntory Institute for Bioorganic Research, Osaka 618-8503, Japan
Department of Molecular Evolution and Development, University of Vienna, A-1090 Vienna, Austria
Department of Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
Department of Computer Science, North Carolina State University, Raleigh, North Carolina 27695, USA
Department of Biology II, Ludwig-Maximilians-University, D-82152 Planegg-Martinsried, Germany
These authors contributed equally to this work.
Deceased.
Present addresses: Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK (P.A.W.); Institute of Human Genetics, University of Heidelberg, D-69120 Heidelberg, Germany (A.-K.G.); Center for Bioinformatics and Computational Biology, National Institute of General Medical Sciences, Bethesda, Maryland 20892-6200, USA (K.A.R.); Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77251-1892, USA (N.H.P.); Ochadai Academic Production, Ochanomizu University, Ohtsuka, Bunkyo, 1128610 Tokyo, Japan (A.O.).