4月1日出版的英国《自然》杂志刊登报告说,一个国际科研小组已完成对别称“珍珠鸟”的斑胸草雀的基因组测序,由于这种歌声动听的鸟儿学习鸣叫的过程与人类学习语言过程颇为相似,测序结果将有助于研究人类语言的基因基础。
该科研小组由美国、英国、德国等多国科研人员组成。报告说,“珍珠鸟”的基因组有约12亿个碱基对,不到人类基因组的一半。其中数百个基因被确认与鸣叫有关。研究发现,当“珍珠鸟”学习鸣叫规律时,大脑中的这些基因会产生非常复杂的“网络反应”,最终帮它学会特有的“歌声”。
参与研究的英国牛津大学教授克里斯·庞庭说,通常人们认为基因只是指导合成蛋白质的蓝图,但这些基因在“珍珠鸟”学习鸣叫的过程中被激活,然后会利用核糖核酸(RNA)去抑制其他一些与发声有关的基因的作用。深入研究这一复杂的过程将有助于探索导致人类口吃等语言疾病的机理。
据悉,“珍珠鸟”基因组是继鸡基因组测序之后第二个被测定的鸟类基因组。据介绍,在鸟类中首先测定鸡的基因组有畜牧业等方面的考虑,而实际上与鸡相比,“珍珠鸟”的基因组更靠近鸟类大家庭基因树的主干,因此对两者基因组的对比也将有助于研究鸟类进化。(生物谷Bioon.com)
Nature:迄今最大的菌类基因组黑松露基因组破译
Nature:水螅基因组测序完成
Science:首个家庭基因组测绘完成
PLoS Biology:成功绘制出蚜虫基因组图谱
Science:青蒿(Artemisia annua)基因组测序成功
Science:金小蜂(Nasonia)基因组测序完成
生物谷推荐原文出处:
Nature doi:10.1038/nature08819
The genome of a songbird
Wesley C. Warren1, David F. Clayton2, Hans Ellegren3, Arthur P. Arnold4, LaDeana W. Hillier1, Axel Künstner3, Steve Searle5, Simon White5, Albert J. Vilella6, Susan Fairley5, Andreas Heger7, Lesheng Kong7, Chris P. Ponting7, Erich D. Jarvis8, Claudio V. Mello9, Pat Minx1, Peter Lovell9, Tarciso A. F. Velho9, Margaret Ferris2, Christopher N. Balakrishnan2, Saurabh Sinha2, Charles Blatti2, Sarah E. London2, Yun Li2, Ya-Chi Lin2, Julia George2, Jonathan Sweedler2, Bruce Southey2, Preethi Gunaratne10, Michael Watson11, Kiwoong Nam3, Niclas Backstr?m3, Linnea Smeds3, Benoit Nabholz3, Yuichiro Itoh4, Osceola Whitney8, Andreas R. Pfenning8, Jason Howard8, Martin V?lker11, Bejamin M. Skinner12, Darren K. Griffin12, Liang Ye1, William M. McLaren6, Paul Flicek6, Victor Quesada13, Gloria Velasco13, Carlos Lopez-Otin13, Xose S. Puente13, Tsviya Olender14, Doron Lancet14, Arian F. A. Smit15, Robert Hubley15, Miriam K. Konkel16, Jerilyn A. Walker16, Mark A. Batzer16, Wanjun Gu17, David D. Pollock17, Lin Chen18, Ze Cheng18, Evan E. Eichler18, Jessica Stapley18, Jon Slate19, Robert Ekblom19, Tim Birkhead19, Terry Burke19, David Burt20, Constance Scharff21, Iris Adam21, Hugues Richard22, Marc Sultan22, Alexey Soldatov22, Hans Lehrach22, Scott V. Edwards23, Shiaw-Pyng Yang24, XiaoChing Li25, Tina Graves1, Lucinda Fulton1, Joanne Nelson1, Asif Chinwalla1, Shunfeng Hou1, Elaine R. Mardis1 & Richard K. Wilson1
The zebra finch is an important model organism in several fields1, 2 with unique relevance to human neuroscience3, 4. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken5—the only bird with a sequenced genome until now6. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes7. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
The Genome Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA
University of Illinois, Urbana-Champaign, Illinois 61801 USA
Uppsala University, Institute for Evolution and Genetics Systems, Norbyv?gen 18D 752 36 Uppsala, Sweden
University of California- Los Angeles, Los Angeles, California 90056, USA
Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
Howard Hughes Medical Institute, Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, North Carolina 27710, USA
Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
Department of Biology & Biochemistry, University of Houston, Houston, Texas 77204, USA
Department of Bioinformatics, Institute for Animal Health, Compton Berks RG20 7NN, UK
Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
Instituto Universitario de Oncologia, Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, 33006-Oviedo, Spain
Crown Human Genome Center, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103-8904, USA
Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
Department of Biochemistry & Molecular Genetics, University of Colorado Health Sciences Center, Mail Stop 8101, Aurora, Colorado 80045, USA
University of Washington, Genome Sciences, Seattle, Washington 98195, USA
Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh University, EH25 9OS, UK
Freie Universitaet Berlin, Institut Biology, Takustr.6, 14195 Berlin, Germany
Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, IhnestraBe 73 14195 Berlin, Germany
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
Monsanto Company, 800 North Lindbergh Boulevard, St Louis, Missouri 63167, USA
Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA