据4月30日的《科学》杂志报道说, 对首个已被测序的两栖类基因组的一项新的分析显示,热带爪蟾(Xenopus tropicalis 生物医药大辞典提供翻译)与人类基因组拥有相当多的共性:所有人类基因中的有近80%的与遗传性疾病有关的基因都可在热带爪蟾的基因中找到对应处。 这些发现表明,人们可以研发一种蛙类的模型来研究并更好地理解形形色色的人类疾病的分子机制。
该研究可能还能提供人们有关为什么世界上蛙类种系继续在快速地衰减的线索。 热带爪蟾(Xenopus tropicalis)基因组中所含有的编码蛋白的基因数目与人类基因组的数目差不多相同,它是人们在实验室中被研究得最充分的蛙类品种,而且它被广泛用作一种研究胚胎发育和细胞生物学的模型。
Uffe Hellsten及其同僚对热带爪蟾的基因组进行了深度的挖掘,他们在其基因组中发现并分析了那些排序和人类及鸡类基因组相同的基因区域(被称作保守同线性)。这些共同的区域主要是一个古老的、有3亿6000万年之久的基因组的一些片断;它们来自曾经在地球上存在过的所有哺乳类动物、鸟类、蛙类、蝾螈类及恐龙类的最后的共同祖先。蛙类和其它的两栖类还受到来自环境中毒素以及其栖息地变化的打击;它们被认为是前哨生物,因为它们对环境中的或是来自食物的污染物极端敏感。应用基因组学的方法来观察蛙类对环境挑战的反应也许可帮助保护它们的多元性。(生物谷Bioon.com)
PLoS ONE:罕见青蛙用超声波互相交流
印尼雨林寒冷急流发现无肺青蛙
生物谷推荐原文出处:
Science DOI: 10.1126/science.1183670
The Genome of the Western Clawed Frog Xenopus tropicalis
Uffe Hellsten,1,* Richard M. Harland,2 Michael J. Gilchrist,3 David Hendrix,2 Jerzy Jurka,4 Vladimir Kapitonov,4 Ivan Ovcharenko,5 Nicholas H. Putnam,6 Shengqiang Shu,1 Leila Taher,5 Ira L. Blitz,7 Bruce Blumberg,7 Darwin S. Dichmann,2 Inna Dubchak,1 Enrique Amaya,8 John C. Detter,9 Russell Fletcher, 2 Daniela S. Gerhard,10 David Goodstein,1 Tina Graves,11 Igor V. Grigoriev,1 Jane Grimwood,1,12 Takeshi Kawashima,2,13 Erika Lindquist,1 Susan M. Lucas,1 Paul E. Mead,14 Therese Mitros,2 Hajime Ogino,15 Yuko Ohta,16 Alexander V. Poliakov,1 Nicolas Pollet,17 Jacques Robert,18 Asaf Salamov,1 Amy K. Sater,19 Jeremy Schmutz,1,12 Astrid Terry,1 Peter D. Vize,20 Wesley C. Warren,11 Dan Wells,19 Andrea Wills,2 Richard K. Wilson,11 Lyle B. Zimmerman,21 Aaron M. Zorn,22 Robert Grainger,23 Timothy Grammer,2 Mustafa K. Khokha,24 Paul M. Richardson,1 Daniel S. Rokhsar1,2
The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.
1 Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.
2 Center for Integrative Genomics, University of California Berkeley, Berkeley, CA 94720, USA.
3 Division of Systems Biology, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK.
4 Genetic Information Research Institute, Mountain View, CA 94043, USA.
5 National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
6 Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA.
7 Department of Developmental and Cell Biology, 4410 Natural Sciences Building 2, University of California Irvine, Irvine, CA 92697–2300, USA.
8 The Healing Foundation Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
9 DOE Joint Genome Institute, Los Alamos, National Laboratory, Los Alamos NM 87545, USA.
10 Office of Cancer Genomics, National Cancer Institute, NIH, DHHS Bethesda, MD 20892, USA.
11 Genome Sequencing Center, Washington University School of Medicine, St. Louis, MO 63108, USA.
12 Joint Genome Institute HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
13 Okinawa Institute of Science and Technology, 12-22, Suzaki, Uruma, Okinawa 904-2234, Japan.
14 Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, D4047C, Mailstop 342, Memphis, TN 38105, USA.
15 Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan.
16 Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
17 Programme d’Epigénomique, CNRS, Genopole, Université d’Evry Val d’Essonne, F-91058 Evry, France.
18 Department of Microbiology and Immunology, Box 672, University of Rochester, Medical Center, Rochester, NY 14642, USA.
19 Department of Biology and Biochemistry, University of Houston, Houston, TX 77204–5001, USA.
20 Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
21 MRC National Institute for Medical Research, London NW7 1AA, UK.
22 Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA.
23 Department of Biology, Gilmer Hall, Post Office Box 400328, Charlottesville, VA 22904–4328, USA.
24 Department of Pediatrics and Genetics, Yale University School of Medicine, Post Office Box 208064, New Haven, CT 06520–8064, USA.