德国比勒费尔德大学7月9日报告说,一个有德国研究者参加的国际研究小组最近完成了对最简单的多细胞生物团藻的基因组测序。科研人员希望以此帮助探寻单细胞生物向多细胞生物演变的奥秘。
单细胞生物怎么能演变为多细胞生物乃至人这样高度复杂的生物,一直是生物研究的重要课题。一个由德国、美国、加拿大和日本科研人员组成的研究小组选择从团藻入手,因为团藻的细胞种类十分简单。此外,团藻还有一个单细胞近亲——莱茵衣藻,后者的基因组测序已在2007年完成。
在美国《科学》(Science)杂志7月9日发表的最新研究报告中,上述研究小组发现团藻的基因组有大约1.4亿个碱基对,包含大约1.45万个基因,比人类基因总数仅少不到一半。参与这项研究的比勒费尔德大学专家说,研究小组在比较团藻和莱茵衣藻基因组时意外发现,尽管这两种生物的复杂程度和生命史存在很大差异,二者的基因组却有相似的蛋白编码潜能。与莱茵衣藻相比,专家在团藻细胞内只发现了很少该生物特有的基因。科研人员由此推断,从单细胞生物演变为多细胞生物并非必需大幅提高基因的数目,在这种演变中,基因如何以及何时编码合成特定的蛋白才具有决定意义。
德国专家说,在单细胞生物向多细胞生物演变的分子机理研究方面,团藻基因组测序是了解这一分子机理的重要一步。长期而言,研究简单生物的分子机理有助于更好地理解人类等复杂生物的进化史。(生物谷Bioon.net)
第一个古代人类基因组测序完成或用于法医鉴定领域
Nature:美科学家完成稻瘟病菌基因组测序
Nature:褐藻(Ectocarpus)基因组测序完成
PLoS Biology:老鼠全基因组测序图公布
个人基因组测序将蓬勃发展—生物谷专访Knome公司总裁及CEO
全基因组测序——低至3万元
生物谷推荐原文出处:
Science DOI: 10.1126/science.1188800
Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri
Simon E. Prochnik,1,* James Umen,2,*, Aurora M. Nedelcu,3 Armin Hallmann,4 Stephen M. Miller,5 Ichiro Nishii,6 Patrick Ferris,2 Alan Kuo,1 Therese Mitros,7 Lillian K. Fritz-Laylin,7 Uffe Hellsten,1 Jarrod Chapman,1 Oleg Simakov,8 Stefan A. Rensing,9 Astrid Terry,1 Jasmyn Pangilinan,1 Vladimir Kapitonov,10 Jerzy Jurka,10 Asaf Salamov,1 Harris Shapiro,1 Jeremy Schmutz,11 Jane Grimwood,11 Erika Lindquist,1 Susan Lucas,1 Igor V. Grigoriev,1 Rüdiger Schmitt,12 David Kirk,13 Daniel S. Rokhsar1,7,
The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138–mega–base pair genome of V. carteri and compared its ~14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal–specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.
1 U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA.
2 The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
3 University of New Brunswick, Department of Biology, Fredericton, New Brunswick E3B 5A3, Canada.
4 Department of Cellular and Developmental Biology of Plants, University of Bielefeld, D-33615 Bielefeld, Germany.
5 Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
6 Biological Sciences, Nara Women’s University, Nara-shi, Nara Prefecture 630-8506, Japan.
7 Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
8 European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
9 Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
10 Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043, USA.
11 HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
12 Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany.
13 Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.