近日,国际著名杂志《临床肿瘤学杂志》Journal of Clinical Oncology刊登了来自中山大学肿瘤防治中心、中国科学院、香港中文大学、斯坦福大学医学院新加坡国立综合医院等机构的研究人员的最新研究成果“Eight-signature classifier for prediction of nasopharnyngeal carcinoma survival.。”,研究者合作,通过对大样本量鼻咽癌回顾性分析研究,发现了7个鼻咽癌相关基因。
领导这一研究的是中山大学肿瘤防治中心的邵建永教授,其早年毕业于安徽省蚌埠医学院,后于中山大学获取医学博士学位。曾留学瑞典卡罗林斯卡医学院从事肿瘤分子生物学研究。临床主攻肿瘤病理诊断,专长鼻咽癌和肝癌的分子生物学研究。曾获得国家自然科学奖二等奖、中华医学科技奖一等奖等奖项。已在权威的专业杂志如Int. J Oncology, Cancer,Cancer Biology & Therapy等刊物发表论文近60篇。
鼻咽癌是一种发生于鼻咽粘膜的恶性肿瘤。其恶性程度较高,且具有极高的癌细胞转移率。 我国是鼻咽癌发病率最高的国家,而广东、广西、海南等地都是高发区,发病率比其他大部分国家、地区高100倍以上,因此鼻咽癌有“广东癌”之称。
自2005年开始,邵建永课题组,采用免疫组织化学染色技术,对来自广东、广西、福建、香港和新加坡等地区的1268个鼻咽癌肿瘤组织标本进行研究,在18个前期研究或文献报道过的与鼻咽癌病因、浸润和转移、肿瘤血管生成等相关基因中,筛选出EB病毒潜伏膜蛋白1等7个与鼻咽癌病人生存预后最为密切的基因,结合鼻咽癌患者的性别参数,应用生物信息学方法,建立数学预测模型,筛选出431名高危患者,其他归为低危组。研究人员临床5年随访追踪发现,两组患者的生存状况存在显著差异,被归类为低危组的鼻咽癌患者5年生存率达到87%,而高危组鼻咽癌患者5年生存率仅为37.7%。
新研究确定的7个鼻咽癌相关基因不仅能够帮助从普通患者中检测出高危鼻咽癌患者,还可以预测鼻咽癌患者复发风险和生存预后,指导临床实施更有效的治疗方案。邵建永教授表示接下来将进一步开展前瞻性临床研究进一步确认其对鼻咽癌病人个体化治疗的临床应用价值。(生物谷Bioon.com)
doi:10.1200/JCO.2010.33.7741
PMC:
PMID:
Eight-signature classifier for prediction of nasopharnyngeal carcinoma survival.
Hu CF,Zhang JX,Chen FL,et al.
Purpose Currently, nasopharyngeal carcinoma (NPC) prognosis evaluation is based primarily on the TNM staging system. This study aims to identify prognostic markers for NPC. Patients and Methods We detected expression of 18 biomarkers by immunohistochemistry in NPC tumors from 209 patients and evaluated the association between gene expression level and disease-specific survival (DSS). We used support vector machine (SVM) –based methods to develop a prognostic classifier for NPC (NPC-SVM classifier). Further validation of the NPC-SVM classifier was performed in an independent cohort of 1,059 patients. Results The NPC-SVM classifier integrated patient sex and the protein expression level of seven genes, including Epstein-Barr virus latency membrane protein 1, CD147, caveolin-1, phospho-P70S6 kinase, matrix metalloproteinase 11, survivin, and secreted protein acidic and rich in cysteine. The NPC-SVM classifier distinguished patients with NPC into low- and high-risk groups with significant differences in 5-year DSS in the evaluated patients (87% v 37.7%; P < .001) in the validation cohort. In multivariate analysis adjusted for age, TNM stage, and histologic subtype, the NPC-SVM classifier was an independent predictor of 5-year DSS in the evaluated patients (hazard ratio, 4.9; 95% CI, 3.0 to 7.9) in the validation cohort. Conclusion As a powerful predictor of 5-year DSS among patients with NPC, the newly developed NPC-SVM classifier based on tumor-associated biomarkers will facilitate patient counseling and individualize management of patients with NPC.