Salk研究所的科学家们对不同地域生长的植物进行了研究,明确了这些植物表观基因组的多样性模式。他们指出,这种多样性不仅有助于植物适应各种环境,也为提高作物产量和研究人类疾病带来了启示。文章于三月六日发表在Nature杂志上。
研究人员发现,随着生长环境的变化,同种植物间不仅存在基因多样性,还存在表观基因组层面上的差异。表观遗传学修饰是指DNA序列上起调控作用的化学标签,能够在不改变DNA序列(A-T-C-G)的情况下调节基因表达。植物和人类中都存在表观基因组,它为细胞提供了微调基因的额外工具。表观基因组学旨在研究基因组中表观遗传学修饰的模式。
研究显示,不同地区生长的植物间,存在较大的表观基因组差异,这赋予植物快速适应环境的能力。“我们研究了从世界各地收集来的植物,发现它们的表观基因组中存在惊人的差异,”文章资深作者,Salk研究所的Joseph R. Ecker教授说。“表观基因组层面上的多样性,为植物适应各种环境提供了不改变DNA序列的快速途径,如若不然植物将需要很长时间来适应。”
一旦理解了植物中的表观基因组改变,科学家们就可以对其进行操纵以满足多种需要,包括发展生物能源和培育耐旱植物等等。表观遗传学知识能够为农业带来重大影响,例如指导人们进行育种,帮助人们选择适应特定环境的农作物等。
Ecker开发了MethylC-Seq技术来检测表观基因组的改变。研究人员通过这一方法,分析了不同地区拟南芥的甲基化模式。拟南芥是植物生物学中宝贵的模式生物。研究中的拟南芥来自北半球的多种气候条件,从欧洲到亚洲,从瑞典到Cape Verde岛。研究人员分别检测了这些拟南芥的基因组和甲基化组,这是解析表观遗传学改变的第一步,这些信息能够揭示表观遗传学改变对植物性状及其适应能力的影响。
“我们预计到不同地区的植物群体之间存在甲基化模式差异,” Ecker实验室的博后Robert J. Schmitz说。“不过,差异之大还是远远超出了我们的预期。”
通过分析甲基化模式,Ecker团队研究了表观基因组对植物基因活性的影响。甲基化能使基因失活,不过与DNA突变不同,甲基化模式是可逆的,这使植物可以暂时活化特定基因。明确植物中受到表观遗传学调控的基因,能够帮助人们找到与环境适应力相关的重要基因。
人体中也广泛存在甲基化沉默基因的事件,例如肿瘤抑制基因的沉默,在癌症研究和治疗中甲基化都是不可忽视的因素。“如果基因被表观基因组关闭,那么我们也可以通过去甲基化将其恢复,”文章的作者之一Matthew Schultz说。分析甲基化差异如何在自然界形成,将帮助人们更好的操纵表观基因组。
下一步,研究人员将解析甲基化差异对植物性状的影响,探寻环境压力所诱导的表观基因组改变。(生物谷Bioon.com)
doi:10.1038/nchembio.657
PMC:
PMID:
RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites
David B F Johnson, Jianfeng Xu,Zhouxin Shen, Jeffrey K Takimoto, Matthew D Schultz
Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but their low incorporation efficiency, which is possibly due to competition from release factors, limits the power and scope of this technology. Here we show that the reportedly essential release factor 1 (RF1) can be knocked out from Escherichia coli by 'fixing' release factor 2 (RF2). The resultant strain JX33 is stable and independent, and it allows UAG to be reassigned from a stop signal to an amino acid when a UAG-decoding tRNA-synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving new protein functions by enabling Uaa incorporation at multiple sites.