美国科学家进行的一项最新研究,为人们在基因层面上认识自然选择过程提供了一幅精妙而详尽的画面。相关论文发表在10月11日的《自然》杂志上。
领导该项研究的是美国霍华德·休斯医学研究所(Howard Hughes Medical Institute)的Sean B. Carroll,他和同事证实了一个单独的酵母菌基因如何经过多代繁殖演变成两种特异性基因,并且刻画出了这两者如何分工,从而使酵母菌成为适应其生存环境的“居民”。这项工作十分重要,因为它从最根本的层面上阐明了进化的驱动力——生物如何变得更加适应环境。Carroll表示,“这实际上就是一个新的功能如何出现、如何进化的问题”。
利用特殊的分子手段,研究人员重现了酵母菌体内一个与糖类利用相关的重要基因,在过去1亿年的时间里所发生的一系列遗传变化。Carroll说,基因复制时产生的变异是创新之源。同时,两个基因肯定比一个好,因为冗余可以促进分工,从而导致新的基因功能出现。比如,人眼的颜色识别需要能够区分红绿色彩的不同蛋白受体来完成,而这两种受体都源于相同的视觉基因。
Carroll表示,进化研究中最大的困难是自然的遗传变异发生的脚步太过缓慢,即使经过数千年甚至数百万年的积累,构成基因的碱基对也没有多少增量。也正因为如此,此次的研究选用了酵母菌这个繁殖周期短、能力强的理想模型。
除了追溯酵母菌的整个进化过程,新的研究还包括交换酵母菌基因组中的不同区域片断,评估这对两种特异性基因表现的影响,等等。
Carroll表示,物种变得更有效率、更加适应环境的过程是“积跬步而致千里”。随着时间的流逝,微小的遗传变化不断叠加,最终导致一些生物成功地凌驾于其他同类之上。“自然选择让一个基因拥有了两个功能,并且刻画出了特异性基因的‘装配线’,”他说。(科学网 任霄鹏/编译)
原始出处:
Nature 449, 677-681 (11 October 2007) | doi:10.1038/nature06151; Received 26 June 2007; Accepted 8 August 2007
Gene duplication and the adaptive evolution of a classic genetic switch
Chris Todd Hittinger1,2 & Sean B. Carroll1
Howard Hughes Medical Institute, Laboratory of Genetics, University of Wisconsin-Madison, 1525 Linden Drive, Madison, Wisconsin 53706, USA
Present address: Center for Genome Sciences, School of Medicine, Washington University in St Louis, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA.
Correspondence to: Sean B. Carroll1 Correspondence and requests for materials should be addressed to S.B.C. (Email: sbcarrol@wisc.edu) and C.T.H. (Email: cthittinger@wustl.edu).
How gene duplication and divergence contribute to genetic novelty and adaptation has been of intense interest, but experimental evidence has been limited. The genetic switch controlling the yeast galactose use pathway includes two paralogous genes in Saccharomyces cerevisiae that encode a co-inducer (GAL3) and a galactokinase (GAL1). These paralogues arose from a single bifunctional ancestral gene as is still present in Kluyveromyces lactis. To determine which evolutionary processes shaped the evolution of the two paralogues, here we assess the effects of precise replacement of coding and non-coding sequences on organismal fitness. We suggest that duplication of the ancestral bifunctional gene allowed for the resolution of an adaptive conflict between the transcriptional regulation of the two gene functions. After duplication, previously disfavoured binding site configurations evolved that divided the regulation of the ancestral gene into two specialized genes, one of which ultimately became one of the most tightly regulated genes in the genome.