北京时间2月15日消息,据国外媒体报道,众所周知,蝙蝠一直依靠反射超声波来确定方位。但美国的科学家们近日称,通过分析出土的蝙蝠化石,科学家们发现5000多万年前的蝙蝠并不像目前的蝙蝠那样拥有声波定位系统。
在2月14日出版的《自然》(Nature)杂志上,美国的科学家公布了他们的这一最新发现。美国科学家称,他们最近在美国怀俄明州出土了一个目前已知最原始的蝙蝠的骨架化石,这个近乎完整的骨架化石可以追溯至始新世纪初,即大约5250万年以前。头骨的形状表明,早期蝙蝠拥有功能强大的翅膀,却无法像现代蝙蝠一样凭回波测定方位,即通过发送声波和分析回声来确定距离和方向。美国自然历史博物馆的进化生物学家南希·西蒙斯说:“这个发现令我们大吃一惊,因为我一直习惯地认为始新世的蝙蝠都是能够凭回波测定方位的,突然发现一只不具备回波测向能力的蝙蝠的确令人兴奋。”
此次发现的意义非同寻常,因为它有助解答一个长期令人困惑的科学问题。西蒙斯说:“这个发现真正令人激动的原因在于,它使我们有机会得以重新审视一个古老的问题——究竟是回波测定在先,还是飞行在先?一直以来,我们都无法准确回答这个问题。现在我们找到了有力证据,证明飞行在先的假说,就像此次发现的蝙蝠一样,能够飞行却缺乏回波测定能力。这样一来,这个一度困扰我们许久的科学问题就有了很好的答案。”这种早期蝙蝠名为Onychonycteris finneyi,它们可能需要依赖视觉、嗅觉和平常的听觉来进行飞行和搜寻猎物。西蒙斯表示,这是蝙蝠家族的一个新分支,它不属于之前我们已知的任何蝙蝠家族。
这只蝙蝠的四肢形状表明,这种动物曾是一个敏捷灵活的攀缘者,能够爬树并吊在树枝上。西蒙斯说:“与大部分蝙蝠相比,由于它的后腿成比例地长出许多,因此它可能十分擅长攀爬和吊挂。这意味着它可能是蝙蝠与其哺乳动物祖先之间的一个桥接点。”尽管Onychonycteris finneyi是迄今为止发现的最原始的蝙蝠,但却不是最古老的,它与名为Icaronycteris的蝙蝠生活在同一时代,两者化石的出土遗址也在同一地区。但是,Icaronycteris的化石却表明它能够利用回波测定来猎捕食物。
在通常情况下,蝙蝠大脑的不同部分能够截获回声信号的不同成分。蝙蝠大脑中的某些神经元对回声频率非常敏感,而另一些则对二个连续声音之间的时间间隔极为敏感。大脑各部分的共同协作使蝙蝠作出对反射物体性状的判断。蝙蝠用回声定位来捕捉昆虫的灵活性和准确性,是非常惊人的。据统计,蝙蝠在几秒钟内就能捕捉到一只昆虫,同时,他们还具有惊人的抗干扰能力,能从杂乱无章的充满噪声的回声中检测出某一特殊的声音,然后很快地分析和辨别这种声音,以区别反射音波的物体是昆虫还是石块,或者更精确地决定是可食昆虫,还是不可食昆虫。(来源:新浪科技 刘妍)
(《自然》(Nature),451, 818-821,14 February 2008,Nancy B. Simmons,Gregg F. Gunnell)
生物谷推荐原始出处:
Nature 451, 818-821 (14 February 2008) | doi:10.1038/nature06549; Received 21 September 2007; Accepted 10 December 2007
Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation
Nancy B. Simmons1, Kevin L. Seymour2, Jörg Habersetzer3 & Gregg F. Gunnell4
American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA
Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada
Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109-1079, USA
Correspondence to: Nancy B. Simmons1 Correspondence and requests for materials should be addressed to N.S. (Email: simmons@amnh.org).
Abstract
Bats (Chiroptera) represent one of the largest and most diverse radiations of mammals, accounting for one-fifth of extant species1. Although recent studies unambiguously support bat monophyly2, 3, 4 and consensus is rapidly emerging about evolutionary relationships among extant lineages5, 6, 7, 8, the fossil record of bats extends over 50 million years, and early evolution of the group remains poorly understood5, 7, 8, 9. Here we describe a new bat from the Early Eocene Green River Formation of Wyoming, USA, with features that are more primitive than seen in any previously known bat. The evolutionary pathways that led to flapping flight and echolocation in bats have been in dispute7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and until now fossils have been of limited use in documenting transitions involved in this marked change in lifestyle. Phylogenetically informed comparisons of the new taxon with other bats and non-flying mammals reveal that critical morphological and functional changes evolved incrementally. Forelimb anatomy indicates that the new bat was capable of powered flight like other Eocene bats, but ear morphology suggests that it lacked their echolocation abilities, supporting a 'flight first' hypothesis for chiropteran evolution. The shape of the wings suggests that an undulating gliding–fluttering flight style may be primitive for bats, and the presence of a long calcar indicates that a broad tail membrane evolved early in Chiroptera, probably functioning as an additional airfoil rather than as a prey-capture device. Limb proportions and retention of claws on all digits indicate that the new bat may have been an agile climber that employed quadrupedal locomotion and under-branch hanging behaviour.