霸王龙复原标本模型:(A)右侧位,(B)背部,(C)颅骨,(D)右侧面
恐龙身体上的脂肪应当有多少?目前科学家使用激光成像技术测定出恐龙的“标准体重”。相关论文发表在《公共科学图书馆·综合》(PLoS ONE)杂志上。
恐龙是巨型动物,即使给活恐龙称体重都是一个棘手的难题,更别说是利用恐龙化石来给它们称体重,现在这一难题得到解决。最近曼彻斯特大学古生物学和生物力学研究小组的卡尔·贝茨(Karl Bates)和他的同事们根据5个恐龙化石和2个霸王龙化石制作成恐龙复原模型,使用激光成像技术测得洛矶山博物馆的较小的霸王龙可能体重介于5.5和7吨之间,而较大的可能重达8吨。
阿托卡高棘龙(Acrocanthosaurus atokensis)是一种大型肉食性恐龙,模样看起来像霸王龙,但其背部的脊骨比霸王龙的大,而且较早出现在地球上,大约出现在1.1亿年前的白垩纪中期。该研究小组称高棘龙可能与MOR555型暴龙和中等身材的成年霸王龙体重相似,大约在6吨左右。The Strutiomimum sedens,它的名字意思是“鸵鸟龙”,也像霸王龙一样生活在白垩纪中期,体重大约在0.4—0.6吨之间。
埃德蒙顿龙是鸭嘴龙科的一种。鸭嘴龙科(Hadrosauridae)是一群常见的草食性鸟脚类恐龙,包括埃德蒙顿龙、副栉龙,它们发现于亚洲、欧洲、以及北美洲的下白垩纪地层。它们是上侏罗纪、下白垩纪禽龙类的后代,并拥有类似的体型。根据埃德蒙顿龙的幼年标本,其体重达0.8—0.95吨。作为成年龙,鸭嘴龙可长到像霸王龙一样大。
该研究小组利用激光扫描(激光雷达)和计算机模拟方法,创造了一系列三维模型标本,试图重塑与活恐龙相同的身形和大小的标本。这种激光扫描仪扫描全部安装好的骨架,制作出每根骨头的空间位置和关节部位的三维模型,这为我们提供了一个高清晰度的骨骼框架以及体腔模型,如胃,肺和气囊等内部器官的再造。这就得计算它的肌肉和内脏的重量,所有这些信息都需要分析身体动作。
为了更准确地测得每种恐龙的体重,他们分析猜测每种器官以及每一部位的重量,以求准确到与真实值相当。科学家不能确定真实的恐龙有多胖,有多瘦,身体上的脂肪应当有多少,他们很有兴趣知道恐龙的标准体重。他们认为,把体重估计得低一点最有可能是正确的,因为活的恐龙会受呼吸作用、走路速度和体能消耗的影响。
该研究小组还测量鸵鸟化石和活的鸵鸟的体重,通过比较,得出测量技术的准确性。利用这些成果,以进一步探讨运动的恐龙,尤其是他们是如何跑的。
卡尔说:“我们的技术使人们能够想象活着的恐龙是胖是瘦。当你看到恐龙模型的骨骼,就可想象它的腹部有多大。任何一个从5岁小孩到老教授的人看到模型都会说:“我认为这个再造恐龙太胖了或太瘦了。”他补充说道:“这一研究帮助我们用三维的方式而不是用以前二维的方式了解恐龙是如何跑的。”
再造更详细的恐龙部位模型使我们能够得知它们体重的变化情况,特别是它们在进化过程中质心的改变。我们都知道,恐龙演变成鸟类,质心变得靠近身体前部,走路姿势变得多种多样。虽然我们重造的恐龙不是鸟类的近亲,但我们仍能看到从阿托卡高棘龙到霸王龙的演变过程中质心在不断向前靠,非常接近现代鸟类的进化图。(生物谷Bioon.com)
生物谷推荐原始出处:
PLoS ONE 4(2): e4532. doi:10.1371/journal.pone.0004532
Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling
Karl T. Bates1*, Phillip L. Manning2,3, David Hodgetts3, William I. Sellers1
1 Adaptive Organismal Biology Research Group, Faculty of Life Sciences, University of Manchester, Jackson's Mill, Manchester, United Kingdom, 2 The Manchester Museum, University of Manchester, Manchester, United Kingdom, 3 School of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, United Kingdom
Abstract
Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models.