据国外媒体8月10日报道,英国皇家植物园乔德雷尔实验室的科学家通过研究发现,有些植物对环境变化的适应速度可能比之前认为的要快得多。这一发现刊登在近期的《分子生物学与进化》(Molecular Biology and Evolution)上。
表观遗传学的出现改变了科学家认知这个世界的方式,其研究范围包括对导致基因功能发生改变的隐性影响的研究,而这种影响是在不改变DNA序列的情况下的可遗传的影响。按照对达尔文进化论的现代理解,科学家原以为只有基因突变才能使得物种出现可遗传的新特性,从而适应生存环境的变化,并且这种适应会持续数百年,而让植物无法适应气候环境的快速变化。
在对三株不同生长环境的新成种兰花进行重点研究时,科学家发现,尽管具有很高的遗传相似度,但这三株兰花在生态需求、形态学、物理特征和分布上还是表现出了很大的差异。最终他们得出结论:表观遗传变化会很大地影响个体种类的潜在适应能力,而反过来,这种适应能力会让物种的进化速度比之前认为的要快很多。这项新发现意义重大,它证明了环境对基因活动的影响是可以被记忆的。
领导该研究的Ovidiu Paun博士表示:“与遗传信息这个‘封闭’系统相反的是,环境能够改变个体种类的表观遗传背景,而个体通过这种方式产生适应能力也是与现有进化观点的一种互补。研究结果表明,达尔文所说的选择性不只是表现在内在基因信息,同时也以同样的方式表现在了表观遗传变化,从而使得物种只需经过几代遗传,就能很快地表现出与祖先不同的适应性”。
实验室负责人Mark Chase表示研究结果“让我们对植物的自适应能力有了信心”,但他也补充说,让濒危植物脱离原来的生存环境,移植到像植物园这样的类似环境,并不是最佳的保护策略,这有可能破坏植物固有的遗传特性,最好的办法还是让其野外生存。(生物谷Bioon.com)
生物谷推荐原文出处:
Molecular Biology and Evolution, doi:10.1093/molbev/msq150
Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae)
Ovidiu Paun*,1,2, Richard M. Bateman3, Michael F. Fay1, Mikael Hedrén4, Laure Civeyrel5 and Mark W. Chase1
1 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, U.K
2 Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
3 Department of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
4 Department of Ecology, Plant Ecology and Systematics, University of Lund, S?lvegatan 37, SE-223 62 Lund, Sweden
5 Laboratoire d'Ecologie Fonctionnelle, UMR 5245, Université de Toulouse, 31062 Toulouse cedex 9, France
Epigenetic information includes heritable signals that modulate gene expression but are not encoded in the primary nucleotide sequence. We have studied natural epigenetic variation in three allotetraploid sibling orchid species (Dactylorhiza majalis s.str, D. traunsteineri s.l. and D. ebudensis) that differ radically in geography/ecology. The epigenetic variation released by genome doubling has been restructured in species-specific patterns that reflect their recent evolutionary history, and have an impact on their ecology and evolution, hundreds of generations after their formation. Using two contrasting approaches that yielded largely congruent results, epigenome scans pinpointed epiloci under divergent selection that correlate with eco-environmental variables, mainly related to water availability and temperature. The stable epigenetic divergence in this group is largely responsible for persistent ecological differences, which then set the stage for species-specific genetic patterns to accumulate in response to further selection and/or drift. Our results strongly suggest a need to expand our current evolutionary framework to encompass a complementary epigenetic dimension when seeking to understand population processes that drive phenotypic evolution and adaptation.