11月3日,最新出版的国际环境学科重要期刊——《环境监测》(Journal of Environmental Monitoring)杂志在线发表了复旦大学环境科学与工程系陈建民教授领衔的课题组以李想博士为第一作者所作的有关雾污染及污染物痕量检测方面的最新成果。该文同时被选为了杂志当期的封面重点推荐论文之一(J. Environ. Monit., 2011, 13, 2988)。
这篇题为《雾-雨事件中多环芳烃的污染特征(Characterization of polycyclic aromatic hydrocarbons in fog–rain events)》的文章是陈建民教授课题组,经过近年来的深入研究,在雾化学及有机污染物分布机理方面取得的实质性研究成果。
雾,又称为接近地面的云,是近地面空气达到饱和时水汽在气溶胶粒子上凝结(或凝华) 为水滴(或冰晶)而使能见距离降低到1000 m以内的天气现象。浓雾造成的低能见度对交通运输事业危害极大,尤其是对航空、海运、河运和高速公路交通具有极大的危害性。据统计,国内外航班不能正常飞行的79%是因雾的缘故;因大雾等恶劣天气造成的交通事故约占事故总数的1/4。雾常发生在逆温较强的时段,受逆温层的阻挡,近地面的污染物不易扩散。在城市高污染条件下发生的雾,污染物溶于雾水中,更加剧了污染程度,其污染成分会灼伤植物叶茎、污损桥梁、建筑和雕塑,更会导致人畜各种呼吸道疾病,对人体健康构成威胁。由于传输作用,污染物上升到大气边界层,污染高山区域,影响云雾化学组成,对当地脆弱的生态系统和区域气候变化产生重大影响。浓雾已成为影响经济和社会发展及人民健康的重要灾害性天气之一。至今,有关雾化学及其有机污染贡献方面,一直缺少定量化的研究方法。
陈建民教授课题组通过自行设计的雾水收集器对上海地区的雾水进行了收集,运用雾监测仪对雾过程进行了全程观测。通过固相微萃取技术对雾水中多环芳烃等有机物污染物进行富集提取,气相色谱-质谱联用仪定性定量分析,得出了多环芳烃等有机物污染物在雾过程中的分布规律。上海市区采集到的雾水,大多颜色较深,存在污染。雾水中可检测到多种致癌致畸物-多环芳烃,其总量大概在0.03 ~ 6.67 μg L-1(微克/升)范围内,该浓度值与国内外其他地区相比偏高。同时,萘、蒽、菲等化合物占雾水中多环芳烃总量的80%左右。源解析表明上海大雾中的多环芳烃多来自本地化石燃料的燃烧。上海雾水pH值介于弱酸性(pH,4.68)和弱碱性(pH,6.58)之间,电导率平均值约为1270 μS/cm,与其它地方相比偏高。雾水中还含有大量的铵离子NH4+(5308 μN) 、钙离子Ca2+ ( 1828 μN) 、 硫酸根SO42- (4378 μN)、硝酸根NO3- (2341 μN)等无机离子。
同时,陈建民课题组还针对雾-雨过程进行了深入分析,发现雾雨沉降作用确实能降低空气中的污染物浓度,但是由于上海汽车尾气和工业废气的排放量大,加之起雾或下雨的时候空气湿度大,加之大气层较为稳定,水平对流和垂直对流都比较弱,这种情况会导致污染物在空气中短时间内大量聚集,污染加重,而且极易演变成灾害性雾霾天气。结果表明,大雾中致癌物多环芳烃雨前雨后的浓度相差近500倍。另外,研究还对雾过程中的气溶胶颗粒物的粒径分布特征,粒径成长特性进行了分析。
多年来,陈建民教授领衔的课题组,一直对大气污染物进行了的长期的跟踪研究,他们相关的雾水中污染物含量研究成果还发表在大气环境领域国际顶尖杂志《Atmospheric Environment》(2011) (《大气环境》杂志)等学术期刊上。
《Journal of Environmental Monitoring》是英国皇家化学学会主办的重要环境类杂志。该成果正式发表,定量揭示了雾水中多环芳烃等有机污染物分布规律及源解析,进一步提升了我国在雾化学领域的学术地位。同时,为我国控制化石燃料及汽车尾气排放的发展战略,以及降低大雾带来的危害提供了科学依据。(生物谷 Bioon.com)
doi:10.1039/C1EM10543D
PMC:
PMID:
Characterization of polycyclic aromatic hydrocarbons in fog–rain events
Xiang Li, Pengfei Li, Lili Yan, Jianmin Chen, Tiantao Cheng and Shifen Xu
Atmospheric polycyclic aromatic hydrocarbons (PAHs) mainly originate from incomplete combustion or pyrolysis of materials containing carbon and hydrogen. They exist in gas and particle phases, as well as dissolved or suspended in precipitation (fog or rain). Current studies in atmospheric PAHs are predominantly focused on fog and rainwater samples. Some sampling difficulties are associated with fog samples. This study presented the first observation of the characteristics of PAHs in fog samples using a solid phase microextraction (SPME) technique. Eighteen fog samples were collected during ten fog events from March to December 2009 in the Shanghai area. PAHs were extracted by SPME and analyzed by gas chromatography-mass spectrometry (GC-MS). As the compounds were partially soluble in water, with solubility decreasing with increasing molecular weight, low molecular weight (LMW) PAH compounds were universally found in the fog water samples. Naphthalene (NaP), phenanthrene (Phe), anthracene (Ant) and fluoranthene (Flo) were dominant compounds in fog water. The total PAH concentration in fog water ranged from 0.03 to 6.67 μg L−1 (mean of 1.06 μg L−1), and was much higher in winter than in summer. The concentration of PAHs in fog or rain water decreased after undergoing a pre-rain or pre-fog wash. The average concentration of PAHs was higher in fog than in rain. Diagnostic ratio analysis suggested that petroleum and combustion were the dominant contributors to PAHs in urban Shanghai. Backward trajectories were calculated to determine the origin of the air masses, showing that air masses were mostly from the northeast territory.