传染病已与偷猎及栖息地丧失结合而成为非洲类人猿存活的主要威胁,因为他们已经成为更小群体的限制。尽管专业自然资源保护学家努力从生态灭绝中挽救我们最密切生态亲戚的工作大部分是失败的,新科学方法是分析主要威胁和发现创新解决方案所必需的。
在这个危机的反应中,加州大学圣塔巴巴拉国家生态学分析与综合中心(NCEAS)的研究人员已经开展了一项开创性研究,此研究阐明了危重疾病如何威胁野生大猩猩与黑猩猩的长期生存。该研究也探查了可能有助于确保它们持续存在的潜在治疗干预措施。
文章"Consequences of Non-Intervention for Infectious Disease in African Great Apes"最近发表在在线期刊 PLoS ONE上。此项研究提示,与那些关于疾病在野生种群中蔓延的最近报道可比较的死亡率是不能忍受的。
通讯作用Sadie Ryan是纽约锡拉丘兹SUNY-ESF的生态学副教授,Walsh是巩固剑桥大学定量生态学家。
据研究,模构表明当前人口水平的恢复时间将从流感样5年爆发到杀死96%人口的埃博拉病毒131年爆发变化,其中当前人口水平源自单一疾病爆发并低于非常乐观的恢复率。种群弹性是测评疾病威胁的中心,因为大猩猩与黑猩猩比包括人类在内的地球上任何其他动物的繁殖要慢得多。
"这些疾病死亡率特别令人不安,由于越来越多的人为了旅游而接触野生猿猴与它们相关的习性、偷猎和保护区种群压力的增加而正上升的病原体风险", Ryan说,"这些小种群类人猿是我们最近亲缘的最后残迹,所以,当谈到干预问题时就有一个巨大的情绪反应。我们应该等或是我们能等,或者我们应该通过提前接种使用预见式干预吗?"
研究人员提醒到,如埃博拉病毒和猴免疫缺陷病毒(SIV)样的自然出现病原体,与诸如常见的感冒和流感病毒一样的传播自人类的呼吸道病原体已被确认为野生大猩猩和黑猩猩死亡率的重要来源,病原体从人类到类人猿的传播率已是众所周知地增长。虽然威胁的认识已经蔓延到整个科学界,如接种疫苗和治疗样的干预仍然是有争议的。
由于缺乏哪一种病原体感染类人猿和什么样感染率的准确诊断数据,Ryan和Walsh发现很难严格量化增加的旅游如何转化为猿群增加的疾病压力。因此,他们以可能与野生猿相关的人类接种率观点和对抗潜在的威胁性疾病的可能疫苗的方式评定并比较了潜在的未来疾病蔓延的危险与不干预反应,包括限制游客接近灵长类、社区健康计划、提高警觉和反应性兽医干预。
根据他们的发现,Ryan和Walsh建议,类人猿保护区"追求和促进治疗和疫苗作为抗争非洲类人猿下降的武器库"。他们推荐,实地研究使用治疗方法与口服用 疫苗的安全和有效方法,一同评估所有类人猿保护策略的成本-效益。
"我们观察了在东道主国家与潜在旅游者上的人口接种率,并观察可应用于类人猿的开发中的潜在疫苗", Ryan说,"但是,我们在疫性出现时通过动员整个研究界更好地了解正在发生的事情而需要做更多的研究。"(生物谷bioon.com)
doi:10.1371/journal.pone.0029030
PMC:
PMID:
Consequences of Non-Intervention for Infectious Disease in African Great Apes
Sadie J. Ryan, Peter D. Walsh
Abstract Infectious disease has recently joined poaching and habitat loss as a major threat to African apes. Both "naturally" occurring pathogens, such as Ebola and Simian Immunodeficiency Virus (SIV), and respiratory pathogens transmitted from humans, have been confirmed as important sources of mortality in wild gorillas and chimpanzees. While awareness of the threat has increased, interventions such as vaccination and treatment remain controversial. Here we explore both the risk of disease to African apes, and the status of potential responses. Through synthesis of published data, we summarize prior disease impact on African apes. We then use a simple demographic model to illustrate the resilience of a well-known gorilla population to disease, modeled on prior documented outbreaks. We found that the predicted recovery time for this specific gorilla population from a single outbreak ranged from 5 years for a low mortality (4%) respiratory outbreak, to 131 years for an Ebola outbreak that killed 96% of the population. This shows that mortality rates comparable to those recently reported for disease outbreaks in wild populations are not sustainable. This is particularly troubling given the rising pathogen risk created by increasing habituation of wild apes for tourism, and the growth of human populations surrounding protected areas. We assess potential future disease spillover risk in terms of vaccination rates amongst humans that may come into contact with wild apes, and the availability of vaccines against potentially threatening diseases. We discuss and evaluate non-interventionist responses such as limiting tourist access to apes, community health programs, and safety, logistic, and cost issues that constrain the potential of vaccination.