植物与动物细胞的主要区别就是光能转换成化学能的过程不同。当没有光可用时,能量从碳水化合物和糖的分解中而来,就象动物和细菌细胞一样。两种细胞器负责这两个过程,即叶绿体负责光合作用,线粒体负责糖分解。一项新研究已打开了一扇通往叶绿体进化早期阶段的窗口。这项研究在线发表在2月27日到3月2日的PNAS上。
大家普遍认为,叶绿体源自单细胞蓝细菌(cyanobacteria,蓝绿藻类原核生物),15亿年前,蓝细菌被更复杂的非光合细胞所吞噬。这两种生物之间原本是共生的,但是蓝细菌将其大部分遗传物质转移至宿主生物体细胞核内,原来的蓝细菌便转变成叶绿体,这样蓝细菌没有宿主就不能存活了。
导致线粒体产生的类似过程
为了维持细胞器功能,于是在细胞质或细胞内部合成转化基因编码的蛋白质,然后再将合成的蛋白质输回细胞器中。在所研究的许多系统中,它们通过一种多蛋白质输入复合物将蛋白质运至叶绿体中,这种输入复合物能使蛋白质穿过叶绿体周围的囊膜。
叶绿体和线粒体之间的事件永远地改变了世界,但很难再研究这个事件发生的过程,因为它发生在很久以前。若要阐明这一过程的进化方式,就先要确定一种生物体,在此生物体中,存在有细菌到宿主依赖性细胞器的转换事件发生。
Nowack和 Grossman重点研究了一种阿米巴原虫(Paulinella chromatophora),它包含两个起源于一个内共生蓝细菌的室,但这是完全进化细胞器形成的早期阶段。
这些室称为色素体,能转移30多种原始蓝细菌基因到宿主生物细胞核中。虽然,在其他内共生菌中也观察到基因转移,但是还不清楚被转移基因的功能,因为不会出现内共生体(与细胞器相反,可夺回被转移基因所编码的蛋白质),它们没有适当的蛋白质输入机制。
利用一种先进的芯片技术,他们确定了三种在细胞质合成然后转入叶绿体内的蛋白质,这三种蛋白质在细胞质中与内在编码的其他蛋白组装成光合过程一部分的工作蛋白复合物。
有趣的是,这个将蛋白质输入色素体的过程可能是新的,包括通过高尔基体运输,再成为本地化色素体。这表明存在蛋白质跨膜产生叶绿体囊膜的原始过程与退化过程。最终这个过程进化成一个更加精细、用特定蛋白复合物有效运输的过程。
这项工作表明,阿米巴原虫是一个潜在的、研究进化过程的模型,通过进化,细胞器发育,并获得输入色素体的蛋白质详细清单,包括蛋白质的功能与来源、被输入的途径,这能使我们更好地了解真核细胞奴役细菌并将它们转化为叶绿体与线粒体之类的细胞器的机制。(生物谷bioon.com)
doi:10.1073/pnas.1118800109
PMC:
PMID:
Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora
Eva C. M. Nowack ,Arthur R. Grossman
Endosymbiotic acquisition of bacteria by a protist, with subsequent evolution of the bacteria into mitochondria and plastids, had a transformative impact on eukaryotic biology. Reconstructing events that created a stable association between endosymbiont and host during the process of organellogenesis-including establishment of regulated protein import into nascent organelles-is difficult because they date back more than 1 billion years. The amoebaPaulinella chromatophora contains nascent photosynthetic organelles of more recent evolutionary origin (?60 Mya) termed chromatophores (CRs). After the initial endosymbiotic event, the CR genome was reduced to approximately 30% of its presumed original size and more than 30 expressed genes were transferred from the CR to the amoebal nuclear genome. Three transferred genes-psaE,psaK1, and psaK2-encode subunits of photosystem I. Here we report biochemical evidence that PsaE, PsaK1, and PsaK2 are synthesized in the amoeba cytoplasm and traffic into CRs, where they assemble with CR-encoded subunits into photosystem I complexes. Additionally, our data suggest that proteins routed to CRs pass through the Golgi apparatus. Whereas genome reduction and transfer of genes from bacterial to host genome have been reported to occur in other obligate bacterial endosymbioses, this report outlines the import of proteins encoded by such transferred genes into the compartment derived from the bacterial endosymbiont. Our study showcases P. chromatophora as an exceptional model in which to study early events in organellogenesis, and suggests that protein import into bacterial endosymbionts might be a phenomenon much more widespread than currently assumed