植物的交配方式(自交vs异交)不仅影响植物自身雌、雄配子结合以及形成合子的方式,还决定了植物群体未来世代的基因型频率、植物的有效群体大小、基因流、选择等进化因素,然而对于从更深层面揭示植物不同交配系统产生的进化后果,目前的研究却涉及较少。
近日,康奈尔大学生态与进化生物学系André Kessler博士与Stuart A. Campbell博士从新的角度研究植物交配系统转变对植物防御机制进化的影响,并取得了阶段性成果,其研究论文Plant mating system transitions drive the macroevolution of defense strategies在美国国家科学院院刊(PNAS)上发表。该论文以分别具有自交亲和(Self-Compatibility,SC)与自交不亲和的(Self–Incompatibility,SI)的茄科13属共56种植物为研究材料,探讨具有不同交配系统的茄科植物与昆虫烟草天蛾(以捕食茄科植物叶片为主)的互作及防御机制。结果显示伴随着植物交配方式从自交不亲和系统(SI)向自交亲和系统(SC)单向、多次发生的转变,茄科植物对昆虫的诱导性防御方式增加,并且植物对昆虫的诱导性防御专化性增强。
从进化角度来看,自交不亲和系统在植物长期进化过程中有利于异花授粉和保持植物高度杂合性,具有较高的进化优势。在茄科植物与昆虫的互作与协同进化中,植物从自交不亲和向自交亲和系统的转变可能是植物在进化过程中从组成型防御向诱导性防御转变的代偿机制。(生物谷Bioon.com)
doi:10.1073/pnas.1213867110
Plant mating system transitions drive the macroevolution of defense strategies
Stuart A. Campbell1 and André Kessler
Understanding the factors that shape macroevolutionary patterns in functional traits is a central goal of evolutionary biology. Alternative strategies of sexual reproduction (inbreeding vs. outcrossing) have divergent effects on population genetic structure and could thereby broadly influence trait evolution. However, the broader evolutionary consequences of mating system transitions remain poorly understood, with the exception of traits related to reproduction itself (e.g., pollination). Across a phylogeny of 56 wild species of Solanaceae (nightshades), we show here that the repeated, unidirectional transition from ancestral self-incompatibility (obligate outcrossing) to self-compatibility (increased inbreeding) leads to the evolution of an inducible (vs. constitutive) strategy of plant resistance to herbivores. We demonstrate that inducible and constitutive defense strategies represent evolutionary alternatives and that the magnitude of the resulting macroevolutionary tradeoff is dependent on the mating system. Loss of self-incompatibility is also associated with the evolution of increased specificity in induced plant resistance. We conclude that the evolution of sexual reproductive variation may have profound effects on plant–herbivore interactions, suggesting a new hypothesis for the evolution of two primary strategies of plant defense.