随着气候变化给农业生产带来了更多不确定性,各国政府和商业团体也越来越关注对作物产量的预测。据物理学家组织网7月22日报道,一个由日本、美国、英国等多国人员组成的国际小组提出,气候数据可以在收获前的几个月帮助预测某些农作物的歉收情况。相关论文发表在7月21日的《自然·气候变化》上。
该研究由日本国家农业—环境科学研究所领导。研究人员发现,在大约1/3的全球耕地中,温度、土壤水分与小麦、水稻的收获产量之间存在密切关系。用计算机模型可以提前3个月预测全球约20%的小麦和水稻产地是否会歉收。
他们利用一个新的作物模型,结合温度、降水预测以及1983年到2006年的卫星观测数据,分析了玉米、大豆、小麦和水稻4种作物。模型显示,对小麦和水稻的预测大部分是成功的。对一些小麦和水稻主要出口国所在地区,如澳大利亚和乌拉圭等地,能提前几个月预测作物歉收情况。除了能预测由严重干旱及其他极端天气导致的大规模作物减产,模型还能预测产量上的一些小变化。
从全球范围来看,虽然预测精度只有三成左右,但研究人员希望通过完善预测参数来提高预测精度,并指出仅利用气温和土壤水分数据就能够预测到这个水平,今后若能利用更加精密的气象数据,可预测的区域将更加广泛。
论文合著者、英国利兹大学教授安迪·查林诺说:“极端气候的影响比小的气候变动更容易预测,在全球的许多地方,即使是产量上5%的变化,该模型也能正确地模拟出来。”
美国国家航空航天局戈达德生物圈科学实验室的莫莉·布朗解释说,气候在作物产量与歉收中的作用或许更直观,但要演示出来却很困难,因为社会与经济因素起了主要作用,包括农业技术、化肥、种子和灌溉设施,是决定一个农场产量的关键。但气候因素仍会引起好坏年景的差异。“我们试图确定天气因素在其中起了多大作用。对于特定地区的特定作物来说,它造成了巨大差异,尤其是对小麦。这篇论文为我们提供了一种工具,有助于理解经济领域之外的变异性来源。”
该研究项目旨在让贫困国家的农民能在好年景取得更好的收成,在不好年景建立缓冲机制。布朗说:“我们可以制定一个新框架,对卫星数据和气候预测模型做进一步探索。”比如,若能在水稻结籽甚至种植前,预测未来是好年景,农民就能获得贷款用于投资技术,以充分利用好天气优势,保险公司也会降低保费;如果预测是坏年景,可能贷款变少而保费提高,并使决策者预先制定促进粮食生产的举措,投资必要的基础设施,它可能起到一个社会安全网的作用。(生物谷 Bioon.com)
生物谷推荐的英文摘要
Nature Climate Change doi:10.1038/nclimate1945
Prediction of seasonal climate-induced variations in global food production
Toshichika Iizumi, Hirofumi Sakuma, Masayuki Yokozawa, Jing-Jia Luo, Andrew J. Challinor, Molly E. Brown, Gen Sakurai & Toshio Yamagata
Consumers, including the poor in many countries, are increasingly dependent on food imports1 and are thus exposed to variations in yields, production and export prices in the major food-producing regions of the world. National governments and commercial entities are therefore paying increased attention to the cropping forecasts of important food-exporting countries as well as to their own domestic food production. Given the increased volatility of food markets and the rising incidence of climatic extremes affecting food production, food price spikes may increase in prevalence in future years2, 3, 4. Here we present a global assessment of the reliability of crop failure hindcasts for major crops at two lead times derived by linking ensemble seasonal climatic forecasts with statistical crop models. We found that moderate-to-marked yield loss over a substantial percentage (26–33%) of the harvested area of these crops is reliably predictable if climatic forecasts are near perfect. However, only rice and wheat production are reliably predictable at three months before the harvest using within-season hindcasts. The reliabilities of estimates varied substantially by crop—rice and wheat yields were the most predictable, followed by soybean and maize. The reasons for variation in the reliability of the estimates included the differences in crop sensitivity to the climate and the technology used by the crop-producing regions. Our findings reveal that the use of seasonal climatic forecasts to predict crop failures will be useful for monitoring global food production and will encourage the adaptation of food systems toclimatic extremes.