生物谷:据上周Cell杂志两篇文章报道,发育过程中的果蝇,基本结构(body plan)的构建机制非常精确。这项发现颠覆“关键蛋白的表达水 平不受严格控制”早期研究结果。
二十多年前,研究人员发现转录因子Bicoid,调控一系列决定果蝇基本结构前轴和后轴的基因的时空表达。这种转录因子在胚胎中形成一定的浓度梯度——躯体前端高浓度的Bicoid激活前端特异基因,后端低水平的Bicoid激活后端特异基因。研究人员将果蝇作为研究动物身体形态(body patterning)的模式系统。
Cell文章作者、普林斯顿大学Thomas Gregor说,之前的研究结果提示,Bicoid的表达水平没有被严密控制,但下游的模式形成(patterning)基因的表达水平很精确。为何无章法的Bicoid表达能够转换出精确的靶标表达,一直是发育生物学领域的一道未解之谜。由于之前的研究是在固定的组织中进行的,
此次,Gregor与其同事决定在活体果蝇中检测Bicoid的表达。他们将融合了绿色荧光色素蛋白基因的Bicoid基因插入黑腹果蝇的基因组中,利用双光子激光扫描显微技术(two-photon laser-scanning microscopy,TPLSM)对胚胎发育头三个小时中的Bicoid梯度进行定量。
第一篇文章中,作者介绍说受精后不到一小时,胚胎中出现Bicoid梯度。每次的核分裂过程中,子细胞核中的Bicoid浓度都会翻番。每次循环的开始,核Bicoid的浓度回到原先水平。
贯穿单次核周期的Bicoid核浓度的四倍性变化“真的令人震惊,”Hanes说。仍不清楚的是这种变化是怎样影响基因表达的,但是“这种研究Bicoid刺激其靶基因表达的机制的新方法将会对这个问题进行解释。”
他们还对Bicoid在细胞中的扩散进行了检测,以判断其梯度的形成方式。两个独立实验显示,Bicoid在细胞中扩散非常慢,但实际上,Bicoid浓度梯度形成的过程不到一个小时。作者推测,胚胎不同组织部位、胚胎发生的不同时刻,扩散速度有所不同。“系统工作的方式比我们想象的要复杂的多,”Patel说,“简单扩散不足以解释。”
原始出处:
Cell, Vol 130, 141-152, 13 July 2007
Article
Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient
Thomas Gregor,1,2,3,4, Eric F. Wieschaus,3,4 Alistair P. McGregor,5 William Bialek,1,2 and David W. Tank1,2,3
1 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
2 Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544, USA
3 Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
4 Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544, USA
5 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
Corresponding author
Thomas Gregor
tg2@princeton.edu
Patterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remain largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (∼1 hr after fertilization), with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal. Initial interphase concentration in nuclei in successive cycles is constant (±10%), demonstrating a form of gradient stability, but it subsequently decays by approximately . Both direct photobleaching measurements and indirect estimates of Bicoid-eGFP diffusion constants (D ≤ 1 μm2/s) provide a consistent picture of Bicoid transport on short (∼min) time scales but challenge traditional models of long-range gradient formation. A new model is presented emphasizing the possible role of nuclear dynamics in shaping and scaling the gradient.