许多人知道,食虫性蝙蝠在夜空中准确捕食,依靠的是敏锐的听觉而不是视力。它与生俱来的回声定位功能,可以通过收发高频声判断位置,从而让猎物无处藏身。那么,究竟是体内的什么物质,才让食虫性蝙蝠具备了如此神奇的听觉呢?近日,华东师大的生命科学专家与英国学者为世人揭开了谜底。他们在食虫性蝙蝠的外耳毛细胞中,发现了一个新鉴定的基因Prestin,而正是这种基因所编码的蛋白质,才让哺乳动物获得了得天独厚的听觉。
最新一期的美国《国家科学院院刊》(PNAS),刊登了华东师大张树义教授带领的研究组与英国伦敦大学斯蒂芬·罗西特博士等合作完成的题为《听觉基因Prestin重新将回声定位蝙蝠聚在一起》的研究成果。据悉,该文的第一作者李钢也是华东师大学者。
该研究表明,在哺乳动物中,回声定位蝙蝠听觉的频率范围在所有的哺乳动物中最宽广,其原因是一个新鉴定的基因Prestin所编码的蛋白质,在哺乳动物的外耳毛细胞放大机能上起到了“发动机”的作用,而哺乳动物的高频听觉敏感性和选择性,同外耳毛细胞放大机制有着密不可分的联系。
为了探究Prestin基因与蝙蝠回声定位之间的进化关系,张树义教授带领的研究团队与英国学者合作,系统地研究了这个基因在具有回声定位能力的食虫性蝙蝠和不具有回声定位能力、以果实为食的蝙蝠之间的进化关系。结果显示,所有具有回声能力的蝙蝠的Prestin基因表现出很高的相似性。而且,在恒频蝙蝠——菊头蝠科中,Prestin基因受到显著的正选择作用。在这一特殊类群中,与高频听觉敏感性和选择性有密切联系的Prestin基因的进化速度明显加快。这项研究结果说明,蝙蝠的高频听觉能力是相对独立地进化出来的。
蝙蝠隶属于翼手目,整个家族共有1117个物种,占兽类物种总数的20%左右。蝙蝠根据形态、食性和是否具有回声定位能力被分为旧大陆果蝠和食虫蝙蝠,早期的形态学家也根据这些特征将蝙蝠分为大蝙蝠和小蝙蝠两个亚目。然而,2005年,《科学》杂志的一篇基于分子证据的文章,彻底推翻了这种传统的分类方法——旧大陆果蝠和某些回声定位蝙蝠、尤其是恒频蝙蝠具有共同祖先,而与另外的使用斜频的回声定位蝙蝠亲缘关系较远。
据悉,张树义教授带领的研究组在先前的研究还发现,和发声相关的Foxp2基因与蝙蝠回声定位密切相关。此项研究再次显示,和听觉相关的基因Prestin与蝙蝠回声定位也密切相关。因此,这两项研究成果,系统、深入地揭示了蝙蝠回声定位进化的分子机制。(生物谷Bioon.com)
生物谷推荐原始出处:
PNAS,doi: 10.1073/pnas.0802097105,Gang Li,Shuyi Zhang
The hearing gene Prestin reunites echolocating bats
Gang Li*, Jinhong Wang*, Stephen J. Rossiter?,?, Gareth Jones§, James A. Cotton?, and Shuyi Zhang
The remarkable high-frequency sensitivity and selectivity of the mammalian auditory system has been attributed to the evolution of mechanical amplification, in which sound waves are amplified by outer hair cells in the cochlea. This process is driven by the recently discovered protein prestin, encoded by the genePrestin. Echolocating bats use ultrasound for orientation and hunting and possess the highest frequency hearing of all mammals. To test for the involvement ofPrestin in the evolution of bat echolocation, we sequenced the coding region in echolocating and nonecholocating species. The resulting putative gene tree showed strong support for a monophyletic assemblage of echolocating species, conflicting with the species phylogeny in which echolocators are paraphyletic. We reject the possibilities that this conflict arises from either gene duplication and loss or relaxed selection in nonecholocating fruit bats. Instead, we hypothesize that the putative gene tree reflects convergence at stretches of functional importance. Convergence is supported by the recovery of the species tree from alignments of hydrophobic transmembrane domains, and the putative gene tree from the intra- and extracellular domains. We also found evidence that Prestinhas undergone Darwinian selection associated with the evolution of specialized constant-frequency echolocation, which is characterized by sharp auditory tuning. Our study of a hearing gene in bats strongly implicates Prestin in the evolution of echolocation, and suggests independent evolution of high-frequency hearing in bats. These results highlight the potential problems of extracting phylogenetic signals from functional genes that may be prone to convergence.