英国科学家经实验发现,某些人对“垃圾食品”不由自主的爱好可能由于其某一基因发生变异。
尽管如此,研究人员认为,只要建立起健康的生活方式,哪怕发生这种基因变异,也不一定就会成为胖子。
基因变异作怪
其实早在去年,科学家们便发现了一种被命名为FTO的基因与人体肥胖问题有关,但一直无法解释其机理。
本月11日出版的美国《新英格兰医学杂志》周刊介绍,最近,英国敦提大学生物医药研究学会专家科林·帕尔默等人组织2726名年龄在4至10岁的苏格兰地区儿童进行实验,一方面测定他们的唾液分析他们的FTO基因是否发生变异,一方面记录他们一日三餐摄入的食物。实验中,孩子们每餐都可以自由选择肉肠、奶酪、面包圈、各种蔬果、水等多种食物。
结果发现,在吃下食物等重的情况下,FTO基因发生变异的孩子每餐平均比FTO基因未发生变异的孩子要多摄入100卡路里。研究人员说,100卡路里虽然不多,但日积月累,可以达到每12天增重1磅(约0.45公斤)的效果。
此外,实验还发现FTO基因有否变异与孩子们的新陈代谢率、运动量、摄食量并无关联。
帕尔默说:“这实际上说明,这种基因变异有让人倾向于选择更不健康、更易致胖食物的功能。”
致胖并非必然
研究报告说,去年针对对象大多是欧洲白人的一项调查结果显示。具有一个FTO变异基因副本的人肥胖率较常人高出30%,具有两个变异基因副本者肥胖率则较常人高出70%。
尽管FTO基因变异与肥胖紧密相关,但帕尔默说,FTO基因变异并不可怕,它不意味着必然造成肥胖。FTO基因发生变异的人完全可以通过控制食量保持正常体重。
“实验说明,基因通过行为习惯导致肥胖,而不是新陈代谢率。也就是说,你可以通过努力做出改变。还有一个好消息是许多发生这种基因变异的孩子并不超重……你仍然具有选择权,只要你不多吃,这个基因不会让你变胖。”
此外,美国迈阿密大学另一项最近进行的有关FTO基因的研究发现,经过一段时间的体育锻炼,FTO基因影响体重的效力会减弱。
总之,帕尔默说,保持健康体重的秘诀不变,那就是:健康饮食、经常运动。
关键在于预防
现代社会由肥胖引起的健康问题日趋严重。美国疾病控制和预防中心数据显示,全美儿童超过16%属于肥胖,成人群体更有高达35%的肥胖率。
帕尔默认为:“近些年肥胖儿童数量激增很大程度上要归咎于大量垃圾食品涌现。这些食品廉价、高热量、容易获得,诱惑着为数众多的(FTO)基因变异者。”
匹兹堡大学医学中心儿童医院医生古萨姆·拉奥说,帕尔默等人的研究意义在于告诉人们预防是避免儿童肥胖的关键。“如果你有孩子,不管他们是否超重,只要发现他们喜欢找垃圾食品吃,你就得出面干预。要注意的是,你需要做的是部分控制而不是全面禁止。如果你完全禁止孩子吃某样东西,那孩子们会误以为这种食品很特别,以后只要他们一得到这种食物就容易被吸引且难以自制。”(生物谷Bioon.com)
生物谷推荐原始出处:
NEJM:Volume 359:2558-2566 December 11, 2008
An Obesity-Associated FTO Gene Variant and Increased Energy Intake in Children
Joanne E. Cecil, Ph.D., Roger Tavendale, Ph.D., Peter Watt, Ph.D., Marion M. Hetherington, Ph.D., and Colin N.A. Palmer, Ph.D.
ABSTRACT
Background Variation in the fat mass and obesity–associated (FTO) gene has provided the most robust associations with common obesity to date. However, the role of FTO variants in modulating specific components of energy balance is unknown.
Methods We studied 2726 Scottish children, 4 to 10 years of age, who underwent genotyping for FTO variant rs9939609 and were measured for height and weight. A subsample of 97 children was examined for possible association of the FTO variant with adiposity, energy expenditure, and food intake.
Results In the total study group and the subsample, the A allele of rs9939609 was associated with increased weight (P=0.003 and P=0.049, respectively) and body-mass index (P=0.003 and P=0.03, respectively). In the intensively phenotyped subsample, the A allele was also associated with increased fat mass (P=0.01) but not with lean mass. Although total and resting energy expenditures were increased in children with the A allele (P=0.009 and P=0.03, respectively), resting energy expenditure was identical to that predicted for the age and weight of the child, indicating that there is no defect in metabolic adaptation to obesity in persons bearing the risk-associated allele. The A allele was associated with increased energy intake (P=0.006) independently of body weight. In contrast, the weight of food ingested by children who had the allele was similar to that in children who did not have the allele (P=0.82).
Conclusions The FTO variant that confers a predisposition to obesity does not appear to be involved in the regulation of energy expenditure but may have a role in the control of food intake and food choice, suggesting a link to a hyperphagic phenotype or a preference for energy-dense foods.