NR2B是一种与学习记忆相关的基因。一只具有较强的学习和记忆功能的NR2B转基因“聪明大鼠”诞生了。这一研究的相关科学论文发表在最新一期的国际权威期刊《公共科学图书馆·综合》(PLoS ONE)杂志上。
由华东师大脑功能基因组学教育部及上海市重点实验室曹晓华教授、西双版纳灵长类模式动物中心以及美国乔治亚医科大学大脑与行为研究所所长钱卓教授组成的联合团队,共同构建了这只转基因的“聪明大鼠”,并进一步证实了“NR2B基因”在大鼠的学习记忆功能中具有重要作用。科学家根据目前流行的儿童图话故事《聪明鼠哈卜杰环游世界》,将这只黑白相间的聪明大鼠取名为“哈卜杰”(Hobbie-J)。
据介绍,科研人员利用脑区特异性的转基因技术,将具有学习记忆作用的“NR2B基因”成功地在“哈卜杰”的前脑高量表达,并从分子、细胞突触和整体行为不同的层次分析了NR2B转基因大鼠的表型。
科研人员对“哈卜杰”进行了多种行为测试,以检测它在学习记忆方面的功能。水迷宫是大鼠学习记忆功能的其中一项实验。科研人员在一个直径150厘米、高50厘米、水深30厘米的圆形水池内,在水下约2厘米处放置一个直径15厘米的平台,并在水中添加白色食用染料,将这个平台隐藏起来,结果“哈卜杰”很快就到了水下隐藏的平台,比同窝的非转基因的“兄弟姐妹”快得多。此后,科研人员将这个平台撤除,“哈卜杰”潜入水后,很快就找到了平台原先所在的区域,在那里停留的时间也比非转基因的“兄弟姐妹”长得多,这表明它学得快、记得牢。
此外,“哈卜杰”在新异物体识别和T-型迷宫的测试中,也表现出学习记忆能力强的高智力。
20世纪90年代,华东师大钱卓教授曾利用特异性的基因剔除技术,证明了NMDA受体在学习记忆中的作用。随后,他领导的研究小组利用区域特异性的转基因技术,创建了“聪明小鼠”,进一步证明了NMDA受体的NR2B是小鼠学习记忆的关键分子开关。
与小鼠相比,大鼠是生物医学研究比较理想的动物模型。因为有关大鼠生理、药理和行为学方面已积累了大量的研究历史资料;而且大鼠的身体大(300克-500克,小鼠仅为20克-35克)、脑体积也大,更适于进行高密度群体神经元在体记录,有利于从神经元网络水平研究脑功能的机制。
与此同时,人类的NR2B基因与大鼠、小鼠的NR2B基因非常相似。业内专家认为,此项工作推动了脑科学的发展,也为改善人脑的学习记忆功能提供了理论指导依据。
据悉,研究工作得到了科技部973项目、教育部、上海市科委、云南省科技厅共同支持。(生物谷Bioon.com)
热点关注:2010广州国际小型猪论坛
生物谷推荐原始出处:
PLoS ONE 4(10): e7486. doi:10.1371/journal.pone.0007486
Genetic Enhancement of Memory and Long-Term Potentiation but Not CA1 Long-Term Depression in NR2B Transgenic Rats
Deheng Wang1,2#, Zhenzhong Cui2#, Qingwen Zeng1, Hui Kuang1,3, L. Phillip Wang2,3, Joe Z. Tsien2*, Xiaohua Cao1*
1 Shanghai Institute of Brain Functional Genomics, the Key Laboratories of MOE and STCSM and College of Life Sciences, East China Normal University, Shanghai, China, 2 Brain and Behavior Discovery Institute and Department of Neurology, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America, 3 Yunnan Banna Primate Model Research Center, Xishuang-Banna, Yunnan, China
One major theory in learning and memory posits that the NR2B gene is a universal genetic factor that acts as rate-limiting molecule in controlling the optimal NMDA receptor's coincidence-detection property and subsequent learning and memory function across multiple animal species. If so, can memory function be enhanced via transgenic overexpression of NR2B in another species other than the previously reported mouse species? To examine these crucial issues, we generated transgenic rats in which NR2B is overexpressed in the cortex and hippocampus and investigated the role of NR2B gene in NMDA receptor-mediated synaptic plasticity and memory functions by combining electrophysiological technique with behavioral measurements. We found that overexpression of the NR2B subunit had no effect on CA1-LTD, but rather resulted in enhanced CA1-LTP and improved memory performances in novel object recognition test, spatial water maze, and delayed-to-nonmatch working memory test. Our slices recordings using NR2A- and NR2B-selective antagonists further demonstrate that the larger LTP in transgenic hippocampal slices was due to contribution from the increased NR2B-containing NMDARs. Therefore, our genetic experiments suggest that NR2B at CA1 synapses is not designated as a rate-limiting factor for the induction of long-term synaptic depression, but rather plays a crucial role in initiating the synaptic potentiation. Moreover, our studies provide strong evidence that the NR2B subunit represents a universal rate-limiting molecule for gating NMDA receptor's optimal coincidence-detection property and for enhancing memory function in adulthood across multiple mammalian species.