细菌大量存在于许多动物的肠道中,然而科学家对宿主如何在这些细菌面前保持其组织的完好性却一直缺乏相关的了解。瑞士科学家在最近一期的《基因与发育》杂志中指出,在受外来细菌激发后,黑腹果蝇(Drosophila melanogaster)肠道上皮细胞的修复需要一种氧化裂解以及多条信号通道来完成。
由NADPH双氧化酶(Duox)调控的一种氧化裂解是黑腹果蝇肠道的免疫响应的一部分。这会使肠道壁受损,从而要求上皮细胞通过肠内干细胞(ISCs)的增殖来修复。瑞士洛桑市全球健康研究所的Nicolas Buchon和同事发现,在响应非共生细菌Ecc15的激发时,抗氧化剂能够减少黑腹果蝇的肠内干细胞增殖。而抑制Duox同样能够在Ecc15存在的前提下减少肠内干细胞的增殖,这意味着氧化裂解在肠道组织增殖性修复的开始过程中扮演了一个重要角色。
在被Ecc15激发的黑腹果蝇中,一部分转录的JAK—STAT通道(这将有助于控制干细胞在黑腹果蝇中的增殖),以及JNK通道(这主要涉及了年老黑腹果蝇肠道的组织完好性的调控)使得转录水平被上调了。研究人员发现,抑制任意一条通道的信号都能够在Ecc15存在的情况下防止肠内干细胞的增殖。此外,他们发现,一种被JAK—STAT通道上调的蛋白质——Upd3——在向干细胞发出信号从而引发增殖的过程中扮演了一个重要角色。
尽管Ecc15并没有杀死野生型果蝇,但那些缺乏增殖性响应的果蝇在激发后的4到8天里相继死亡。当这些果蝇被一种低剂量的病原体激发后,一种与野生型果蝇类似的增殖性响应被观察到,但是高剂量则导致了上皮细胞的损伤及死亡,这表明修复通道在某些情况下是不足的。当研究人员将正常修复的果蝇与无外来感染的果蝇——即在它们的肠道中没有细菌——进行比较后,他们发现,在无外来感染的果蝇中,通过JNK和JAK—STAT通道的信号与细胞增殖都减少了。
因此,似乎组织形态学和肠道对氧化损伤的响应是由对氧化裂解的识别来维持的,并且通过JAK—STAT和JNK通道的信号导致了肠内干细胞的增殖和修复。(生物谷Bioon.com)
生物谷推荐原始出处:
Genes & Dev. 2009. 23: 2333-2344 doi:10.1101/gad.1827009
Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila
Nicolas Buchon2, Nichole A. Broderick, Sveta Chakrabarti and Bruno Lemaitre1
Global Health Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Gut homeostasis is controlled by both immune and developmental mechanisms, and its disruption can lead to inflammatory disorders or cancerous lesions of the intestine. While the impact of bacteria on the mucosal immune system is beginning to be precisely understood, little is known about the effects of bacteria on gut epithelium renewal. Here, we addressed how both infectious and indigenous bacteria modulate stem cell activity in Drosophila. We show that the increased epithelium renewal observed upon some bacterial infections is a consequence of the oxidative burst, a major defense of the Drosophila gut. Additionally, we provide evidence that the JAK–STAT (Janus kinase–signal transducers and activators of transcription) and JNK (c-Jun NH2 terminal kinase) pathways are both required for bacteria-induced stem cell proliferation. Similarly, we demonstrate that indigenous gut microbiota activate the same, albeit reduced, program at basal levels. Altered control of gut microbiota in immune-deficient or aged flies correlates with increased epithelium renewal. Finally, we show that epithelium renewal is an essential component of Drosophila defense against oral bacterial infection. Altogether, these results indicate that gut homeostasis is achieved by a complex interregulation of the immune response, gut microbiota, and stem cell activity.