美国加州卡内基研究院的科学家与一些同事*发现了一种植物固醇能促使两种基因相互对抗——一个基因抑制另一个基因从而确保水稻和实验植物拟南芥(Arabidopsis thaliana,芥菜的一种亲缘物种)的叶子正常生长。这些结果发表在了2009年12月15日出版的《植物细胞》杂志上,它对于理解如何操纵作物生长和产量具有重要意义。
在植物中,固醇水平反映了环境和内部信号,而且控制着许多过程。称为油菜素内酯(BRs)的固醇激素在细胞表面开始它们的活动,并通过一种分子接力从而把信号送入细胞核,打开或关闭特定基因,特别是那些调控植物生长和发育的关键基因。尽管科学家对这种固醇如何影响拟南芥基因已经有了很多发现,它对水稻等农作物的影响还知之甚少。
论文的作者之一、卡内基研究院植物生物学系的Zhi-Yong Wang解释了这项研究:“我们知道这种固醇对于激活控制着拟南芥以及水稻的细胞生长的基因具有非常重要的作用。对这种固醇最敏感的反应之一是水稻的叶弯曲,这是由于叶片和叶鞘连接处的上层细胞的扩张造成的。我们希望确定这种固醇如何在水稻中发挥作用。我们发现了这种固醇影响两个基因编码(或制造)的蛋白质,后者把其它基因打开或关闭;它们被称为转录因子。在水稻中,当一个称为叶倾斜增加1基因(ILI1)被打开的时候,它导致了叶弯曲。有趣的是,我们发现了ILI1蛋白也与另一种称为IBH1的转录因子结合,并抑制其功能。当存在过多ILI1蛋白的时候,叶子过度弯曲,让植株变得粗浓。当IBH1浓度高的时候,连接处的细胞生长停滞,而水稻变得非常直,占据的空间更少。在正常的水稻植株中,ILI1和IBH1的平衡让生长得到控制。”
这一对基因提供了控制叶子角度的独特工具,这对于作物产量有重要作用,因为直立的叶片改善了光捕获而且能让水稻植株种植得更密集,从而获得每公顷的更高产量。
通过一系列实验,这组科学家确定了这种固醇如何与这些基因相互作用。他们发现了油菜素内酯相反地调控这些基因——ILI1被激活了,而IBH1被抑制了。因此,这种固醇改变了ILI1和IBH1的蛋白质产物的平衡,从而启动了细胞生长。
“看上去这种固醇导致了IBH1基因停止制造IBH1蛋白,与此同时增加了ILI1蛋白的生产,而这关闭了IBH1对细胞生长的抑制。这确保了细胞根据固醇的水平而生长到合适的长度,”Wang评论说。
这组科学家对芥菜进行了类似的实验,结果显示出固醇与芥菜基因以同样的方式相互作用。“由于类似的基因在不同的植物体内做了同样的事情,这个过程很可能非常古老而且见于许多不同的高等植物。我们对这类机制了解得更多,我们就能更好地改造农作物从而养活不断增加的人口,”Wang得出结论说。(生物谷Bioon.com)
更多水稻有关研究:
The Plant Cell:水稻microRNA的效应复合体和靶标
Science:水稻中鉴别出可持久抗击稻瘟病的基因
Sci. Signal.:发现水稻耐淹水的关键基因
New Phytologist:水稻落粒基因的进化与驯化过程机制
Nature:触发深水水稻中间节增长的基因
PNAS:特殊基因造成水稻杂交品种不育
The Plant Cell:揭示出水稻不定根发育的调控机理
PNAS:水稻抗旱性调控基因
生物谷推荐原始出处:
The Plant Cell December 15, 2009; 10.1105/tpc.109.070441
Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and Arabidopsis
Li-Ying Zhang 1, Ming-Yi Bai 2, Jinxia Wu 3, Jia-Ying Zhu 1, Hao Wang 1, Zhiguo Zhang 3, Wenfei Wang 1, Yu Sun 4, Jun Zhao 1, Xuehui Sun 3, Hongjuan Yang 5, Yunyuan Xu 5, Soo-Hwan Kim 6, Shozo Fujioka 7, Wen-Hui Lin 5, Kang Chong 5, Tiegang Lu 3, and Zhi-Yong Wang 2*
1 Key Laboratory of Photosynthesis and Environmental Molecular Biology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
2 Key Laboratory of Photosynthesis and Environmental Molecular Biology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
3 Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
4 Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
5 Key Laboratory of Photosynthesis and Environmental Molecular Biology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
6 Department of Biological Sciences, Yonsei University, Wonju-Si 220-710, Korea
7 RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198, Japan
In rice (Oryza sativa), brassinosteroids (BRs) induce cell elongation at the adaxial side of the lamina joint to promote leaf bending. We identified a rice mutant (ili1-D) showing an increased lamina inclination phenotype similar to that caused by BR treatment. The ili1-D mutant overexpresses an HLH protein homologous to Arabidopsis thaliana Paclobutrazol Resistance1 (PRE1) and the human Inhibitor of DNA binding proteins. Overexpression and RNA interference suppression of ILI1 increase and reduce, respectively, rice laminar inclination, confirming a positive role of ILI1 in leaf bending. ILI1 and PRE1 interact with basic helix-loop-helix (bHLH) protein IBH1 (ILI1 binding bHLH), whose overexpression causes erect leaf in rice and dwarfism in Arabidopsis. Overexpression of ILI1 or PRE1 increases cell elongation and suppresses dwarf phenotypes caused by overexpression of IBH1 in Arabidopsis. Thus, ILI1 and PRE1 may inactivate inhibitory bHLH transcription factors through heterodimerization. BR increases the RNA levels of ILI1 and PRE1 but represses IBH1 through the transcription factor BZR1. The spatial and temporal expression patterns support roles of ILI1 in laminar joint bending and PRE1/At IBH1 in the transition from growth of young organs to growth arrest. These results demonstrate a conserved mechanism of BR regulation of plant development through a pair of antagonizing HLH/bHLH transcription factors that act downstream of BZR1 in Arabidopsis and rice.