谷氨酸诱发培养的大鼠星形胶质细胞内钙升高的机制研究
胡波1 孙圣刚1 何立铭2 张春光2 童萼塘1
(1.华中科技大学同济医学院附属协和医院神经科,湖北武汉,430022;2.华中科技大学生物物理和生物化学研究所, 湖北 武汉,430030)
[摘要] 目的:研究谷氨酸对纯化培养的大鼠星形胶质细胞的胞内钙信号的影响及受体作用机制。方法:用显微荧光测量技术监测星形胶质细胞内钙信号的动态变化和谷氨酸对其影响,观察阻断NMDA和/或AMPA受体,谷氨酸对胞内钙信号影响的变化。结果:谷氨酸明显升高胞内游离钙浓度,NMDA和AMPA受体拮抗剂、 胞外钙离子浓度的降低及钙离子螯合剂均可不同程度地减弱其引发的胞内游离钙离子升高程度。结论:谷氨酸通过多种途径影响星形胶质胞内钙信号,激活NMDA和AMPA受体是其中的重要机制之一。
[关键词]星形胶质细胞 谷氨酸 NMDA受体 AMPA受体 [Ca2+]i
The mechanism of glutamate inducing intracellular calcium increase in cultured rats’ astrocytes
HU Bo1, SUN Seng-gang1, HE Li-ming2, ZHANG Chun-guang2, TONG E-tang1
(1. Neurology Department, union Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430022; 2. Institute of Biophysics and Biochemistry, Huazhong Science and Technology University, Wuhan 430074,China)
[Abstract] Objective: To study the effect of glutamate on the intracellular calcium signal of cultured rat astrocytes and its mechanism. Methods: Using microfluorescent technique to detect the calcium signal and the effect of glutamate on it, observing its change upon the antagonization of NMDA and AMPA receptors simultaneously or respectively. Results: Glutamate can increase the intracellular free Ca2+ obviously, the antagonists of NMDA and AMPA receptors, the decrease of extracellular calcium concentration and the calcium chelator can attenuated the response at different extent. Conclusion: It is suggested that glutamate can affect intracellular calcium signal by complex mechanisms, the activation of NMDA and AMPA receptors is an important one of them.
[Key words] astrocytes; glutamate; NMDA receptor; AMPA receptor; [Ca2+]I
中枢神经系统中,胶质细胞的数量几乎占90%,当中枢神经系统受损后会呈现出胶质化即胶质细胞增多的特征,然而对于其功能,我们仍知之甚少。近年来的研究显示胶质细胞与神经元之间存在密切关系,已有足够证据显示神经元和胶质细胞间进行着频繁的双向交流[1]。神经元突触末端释放的神经递质可作用于星形胶质细胞,诱发其胞内游离钙浓度( [Ca2+]i )升高。谷氨酸作为中枢神经系统内最重要的一种兴奋性神经递质,已被证明在神经元和胶质细胞的双向交流中起了举足轻重的桥梁作用。在生理条件下,神经元释放的谷氨酸即可使胶质细胞内的[Ca2+]i升高,并且Ca2+的这种变化可能参与了脑内的突触形成,长时程增强和谷氨酸能递质依赖性事件[2]。最近的研究显示,胶质细胞内升高的游离钙离子正是它释放神经递质的重要机制之一[3~4]。因此,研究谷氨酸作用于星形胶质细胞的具体机制对于理解神经元-胶质细胞的相互关系及重新评估胶质细胞在神经系统中的作用和地位是十分必要的。
1 材料和方法
1.1 试剂和药品 胎牛血清,DMEM/F12由Gibco公司提供,HEPES, D-(-)-2-amino-5-
phosphonopentanoic acid [D-AP-5; N-methyl-D-aspartate (NMDA)受体的选择性拮抗剂], 6-cyano-7-nitroquinoxaline-2,3-dione [ CNQX ; alpha-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) 受体的选择性拮抗剂], L-glutamate , poly-lysine , trypsin , EGTA, thapsigargin , 均由Sigma公司提供。Fura-2/AM 由 Molecular Probe公司提供。
1.2 细胞培养 按照Mc Carthy 和 Devellis的方法进行星形胶质细胞的原代培养[5]。出
生后1~3d的新生Sprague-Dawley大鼠由华中科技大学同济医学院实验动物中心提供。用乙醚麻醉后,70%的乙醇消毒,取脑,将皮质横切为500-800 μm厚的脑片,用0.25%的胰蛋白酶,置于37℃、5% CO2的培养箱内消化30min,获得细胞悬液后种植到培养瓶内。培养基成分为:78% DMEM/F12, 10% 小牛血清, 1% penicillin 和 streptomycin(100μg /ml)。在10%CO2 ,pH = 7.2~7.3 和37℃的培养箱内培养7~9d后放入180rpm的恒温摇床摇15h, 再将其传代,种在盖玻片上,种植密度为5×105 ml-1,3~7d后的细胞可用于实验。Glial fibrilary acidic protein(GFAP)阳性的细胞为星形胶质细胞,用免疫组织化学的方法鉴定本法培养的细胞中,GFAP阳性细胞占98%。
1.3 实验系统设备 Fura-2荧光测钙系统包括:倒置显微镜Axiovert 100 (Zeiss,Germany )、
单色灯光源75X-O(Ushio, Japan)、控制单元(T.I.L.L Photonics, Germany)、光导纤维和滤光片等。计算机通过与Pulse+Pulsefit8.0 (HEKA, Germany)捆绑的Fura软件(HEKA,Germany)对控制单元进行控制。F340/F380 的荧光比值被用来反映[Ca2+]i的变化[6]。
1.4 Fura-2荧光测钙的基本原理 Fura-2是一种钙结合荧光试剂,与钙离子结合后,激发波长发生改变,由未结合钙离子时的380nm移至340nm, 因此,分别测量340nm和380nm波长时Fura-2-Ca2+ 和Fura-2的荧光强度,代入公式:[Ca2+]i=KdX(R-Rmin)/(Rmax-R)(Sf2/Sb2),便可以计算出细胞内游离钙离子浓度。本文中用F340/F380(即 fluorescence ratio)来反应[Ca2+]i的变化。
1.5 Fura-2的加载 Fura-2-5k 可直接通过膜片钳电极向细胞内导入,而对于Fura-2/AM则需要孵育处理才能使Fura-2加载到胞内。本实验中均采用Fura-2/AM孵育法加载Fura-2。
Fura-2/AM 50μg溶于50μl Pluronic 母液,混合均匀,制成1mmol/L fura-2/AM溶液。然后用10ml的细胞外液稀释并以250ul体积分装与eppendorf 管中,放置到-20℃冰箱中保存。在实验皿中加入细胞外盐溶液,然后用缓冲液冲洗一遍,并将皿中溶液定量为0.5ml, 然后在避光条件下将Fura-2/Am母液解冻,把250ul全部加入实验皿之中。把实验皿放入细胞培养箱中10~30min后取出,再用缓冲液冲洗两遍除去胞外多余Fura-2/AM后即可开始实验[17]。
1.6 给药方法 将D-AP-5,CNQX,谷氨酸等按实验设计配置成高浓度的储存液,使用时稀释100倍或更高倍数。其中水溶性药物用Krebs-HEPHS液配制,脂溶性药品用二甲基
亚砜配制。
1.7 溶液 细胞外液成分为 (mmol/L): 标准胞外液的成分是(单位mmol/L):NaCl 140,KCl 2,MgCl2 1,CaCl2 2.5,HEPES 10,BSA 0.05%,葡萄糖40; pH 为7.3。在胞外无钙时,用MgCl2来代替CaCl2,但未加EGTA螯合剂。
2 结果
2.1 谷氨酸诱发胶质细胞[Ca2+]i升高 在原代培养的星形胶质细胞中,82.5%的细胞对l-glutamate有反应(n =120)。[Ca2+]i的变化呈现出多种形式,少数细胞荧光比值变化较小,而多数细胞的比值表现出明显的升高,在一些细胞上则出现钙震荡的形式(数据未展示)。
谷氨酸诱发的[Ca2+]i升高与谷氨酸的刺激时间相关,用100µmol/L的谷氨酸刺激同一个细胞,每次刺激间隔大于10min,随着刺激时间的延长,荧光比值逐步增高,且从峰值下降所需的时间也逐渐延长(n=7)(Fig 1A.)。
用不同浓度的谷氨酸刺激同一个细胞,每次刺激间隔大于15min,随着刺激浓度的升高,荧光比值逐步增高;刺激浓度为50mmol/L时,[Ca2+]i迅速、极度升高,荧光比值居高不下,提示细胞死亡;EC50 大约为5mmol/L(n=7)(Fig 1B)。
Fig 1 L-glutamate elevate [Ca2+]i of astrocytes in normal calcium extracellular solution. A: When applied 100µm glutamate for 5s, 10s, 20s or 30s on the same cell at intervals of 15min at least to avoid receptor desensitization, the fluorescence ratio increased by time-dependent manner. B: Different concentration glutamate applied from 1µmol/L to 5mmol/L on the same cell for 10 s at intervals of 15min at least to avoid receptor desensitization, the fluorescence ratio increased with Glu concentration-dependent manner
2.2 NMDA受体在谷氨酸诱发反应中的作用 在所有对谷氨酸刺激有反应的细胞中,由谷氨酸所诱发的胞内游离钙的升高在79%的细胞可被100µmol/L D-AP-5明显抑制,但不能完全抑制(Fig 2A.), 而其余21%的细胞不能被明显抑制(n=66)。这表明在正常含钙外液中,谷氨酸对于星形胶质细胞的作用部分是通过NMDA受体来实现的。同时,NMDA可诱发的胶质细胞内[Ca2+]i的升高,该反应可被 NMDA受体抑制剂D-AP-5可逆性抑制(Fig 2B)( n=10)。
Fig 2A The effect of D-AP-5 to increased astrocytic [Ca2+]i induced by glutamate. In normal extracellular solution, applied 1mmol/L glutamate to stimulate cell for 5s, the fluorescence ratio increased obviously, When the same cell repetitively stimulated with 1mM Glu and 50µmol/L D-AP-5 simultaneously at intervals of 15min at least to avoid receptor desensitization, the elevation of fluorescence ratio induced by glutamate was diminished obviously, but not be abolished completely
100µM D-AP-5
50μM NMDA
50μM NMDA
50μM NMDA
NMDA
30min
0.1 (Fluoresence Ratio)
50s
Fig 2B The effect of NMDA to astrocytic [Ca2+]i. In normal extracellular solution, 50μmol/L NMDA induced astrocytic [Ca2+]i increase obviously. When the same cell stimulated with 50μmol/L D-AP-5 and 50μmol/L NMDA simultaneously, no marked elevation of fluorescent ratio was showed. The same cell washed and stimulated more than 30 min later, the elevation of astrocytic [Ca2+]i recovered at some extent
2.3 非NMDA受体在谷氨酸诱发反应中的作用 在所有对谷氨酸刺激有反应的细胞中,谷氨酸引发的胞内游离钙的升高在83%的细胞可被45µmol/L CNQX明显抑制(Fig 3), 而在其余17%的细胞中这种抑制反应并不显著(n=70)。这表明在正常含钙外液中,谷氨酸对于星形胶质细胞的作用部分是通过非NMDA受体来实现的。
当在同一个细胞上同时运用NMDA和非NMDA 受体的拮抗剂时,可见谷氨酸引发的胞内游离钙的升高可被明显抑制,但仍有较小的反应存在(见Fig 4)(n=23),因而推测谷氨酸可能也通过其他途径调节胞内钙浓度的变化,如代谢型谷氨酸受体等。
在无钙的细胞外液中,谷氨酸诱发的胶质细胞内游离钙的升高幅度较在正常细胞外液中明显减小,NMDA受体选择性拮抗剂D-AP-5和非NMDA 受体的拮抗剂CNQX可使之进一步下降,但并不会使反应完全消失(见Fig 5)(n=11)。
Fig 3 The effect of CNQX no increased astrocytic [Ca2+]i induced by glutamate. In normal extracellular solution, when the cell stimulated repetitively with 1mmol/L Glu and 45 µmol/L CNQX simultaneously at intervals of 15min at least to avoid receptor desensitization , elevation of fluorescence ratio induced by glutamate were diminished obviously, but not be abolished entirely
Fig 4 The effect of CNQX and D-AP-5 to increased astrocytic [Ca2+]i induced by glutamate. In normal extracellular solution, when the cell stimulated repetitively with 1mmol/L Glu, 45µmol/L CNQX and 100µmol/L CNQX simultaneously at intervals of 15min at least to avoid receptor desensitization, elevation of fluorescence ratio induced by glutamate was diminished obviously, but not be inhibited entirely.
Fig 5 The effect of CNQX and D-AP-5 no increased astrocytic [Ca2+]i induced by glutamate in 0 Ca2+ extracellular solution. When bath in 0 Ca2+ extracellular solution, stimulating cell with 1mmol/L Glu could induce astrocytic [Ca2+]i increase moderately, when the same cell stimulated repetitively with 45µmol/L CNQX and 100µmol/L CNQX simultaneously at intervals of 15min at least to avoid receptor desensitization, elevation of fluorescence ratio induced by glutamate was diminished obviously, but not be inhibited entirely
3 讨论
当急性脑缺血或损伤时,中枢神经系统内的兴奋性/抑制性氨基酸平衡被打破,组织内谷氨酸浓度急剧升高,神经元上的谷氨酸受体被过度激活,引起胞内钙超载和系列连锁反应,最终导致神经元死亡 [7~8]。已有研究证实此时邻近的星形胶质细胞可参与过量谷氨酸的摄取,保护神经元,有人认为神经元胞外空间内的谷氨酸浓度和弥散度与它们周围的星形胶质细胞覆盖率密切相关[9~10],而星形胶质细胞对谷氨酸的摄取在病理和生理条件下都十分重要。
Non-NMDA受体在谷氨酸诱发的[Ca2+]i的升高中起了部分作用,CNQX作为AMPA/Kainate(non-NMDA)受体的高效选择性拮抗剂可降低谷氨酸诱发的星形胶质细胞[Ca2+]i升高。有研究发现星形胶质细胞膜上表达具有Ca2+通透性的AMPA受体[11],这与我们的结论相互支持。Seifert等认为星形胶质细胞上激活AMPA受体所诱发的[Ca2+]i升高是通过可逆性Na(+)/Ca(2+)交换机制和胞内钙库释放 Ca2+来共同实现的[12,13]。然而,也有人认为AMPA和NMDA受体的激活并不会影响胞内的钙库释放[14]。
Smith等提出星形胶质细胞上存在三种转膜Ca2+内流机制:电压门控 Ca2+通道(VGCCS),alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)亚型的谷氨酸受体和Na+/Ca2+ 交换[12]。而我们的研究结果显示除此之外,还存在NMDA亚型的谷氨酸受体参与其膜上的Ca2+转运。NMDA可引起星形胶质细胞的[Ca2+]i的升高,且该反应可被其选择性NMDA受体拮抗剂D-AP-5可逆性抑致,从而显示星形胶质细胞上有NMDA受体存在并在钙信号的调节中起重要作用;免疫组织化学和生理学的有关研究支持了我们的推论[16]。NMDA受体在星形胶质细胞的钙动员中的作用仍需进一步研究。
谷氨酸诱发原代培养的星形胶质细胞内[Ca2+]i升高是浓度依赖型和时间依赖型的。谷氨酸不仅激活non-NMDA和NMDA受体,也引发了细胞的系列与胞内钙动员相关的反应,如IP3的的合成增多,而后者可激活IP3-敏感的钙库。当NMDA和non-NMDA受体被其各自的选择性拮抗剂阻断,谷氨酸仍能引起星形胶质细胞的[Ca2+]i轻度升高,这提示谷氨酸同样可作用于G-蛋白偶联的代谢型谷氨酸受体,已有研究发现谷氨酸可通过代谢型谷氨酸受体诱导胞内钙库的钙释放,细胞内钙库的耗竭剂thapsigargin可抑制该受体激动剂所诱发的星形胶质细胞[Ca2+]i升高[18],此外代谢型谷氨酸受体在星形胶质细胞上的表达已经得到证实[19]。另一方面,在无钙的细胞外液中,谷氨酸仍可诱发胶质细胞内游离钙的升高,这进一步证实谷氨酸引发的[Ca2+]I升高仅部分依赖于细胞外钙,胞内钙库的释放也是其重要的机制;在无钙条件下,NMDA受体选择性拮抗剂D-AP-5和非NMDA 受体的拮抗剂CNQX可使谷氨酸引发的[Ca2+]i升高幅度减小,这是否表明此两种受体也影响胞内钙库对钙离子的释放和摄取,有待进一步研究。
我们的研究显示:谷氨酸诱发的大鼠星形胶质细胞内[Ca2+]i升高是通过多途径实现的,NMDA和非NMDA受体在此过程起重要作用,而代谢型谷氨酸受体可能与胞内钙库的调节功能。通过对胶质细胞谷氨酸受体参与钙调控机制的研究,为我们进一步探索胶质细胞在神经系统信号传导中的作用提供了重要线索。由于钙波和钙振荡可能是神经元与胶质细胞间信息交换的重要途径,因而对钙传导途径的研究是神经系统生理功能的关键之一。
致谢 衷心感谢华中科技大学生物物理与生物化学研究所的徐涛教授和同济医学院脑研究所的刘仁刚教授,周洁萍、王珍老师在本研究中所提供的指导和帮助!
[参考文献]
[1] Carmignoto G. Reciprocal communication systems between astrocytes and neurones[J]. Prog Neurobiol, 2000,62(6):561-581.
[2] Shelton MK, McCarthy KD. Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ[J]. Glia, 1999,26(1):1-11.
[3] Sanzgiri RP, Araque A, Haydon PG. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cell[J]. J Neurobiol, 1999,41(2):221-229.
[4] Parpura V, Haydon PG. Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons[J]. Proc Natl Acad Sci USA, 2000,97(15):8629-8634.
[5] Mc Carthy K, Devellis J. Preparation of separate astroglial and Oligodendroglial cultures from raty cerebral tissue[J]. J Cell Bio,1980,85(3):890-892.
[6] Chen LY, Zhou SB, Lou XL, et al. Different stimulatory opioid effects on intracellular Ca2+ in SH-SY5Y cells[J]. Brain res, 2000,882:256-265.
[7] Nishizawa. Glutamate release and neuronal damage in ischemia. Life Sci[J]. 2001,69(4):369-381.
[8] Koinig H, Vornik V, Rueda C, et al. Lubeluzole inhibits accumulation of extracellular glutamate in the hippocampus during transient global cerebral ischemia[J]. Brain Res, 2001,898(2):297-302.
[9] Chen Y, Vartiainen NE, Ying W, et al. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism[J]. J Neurochem., 2001,77(6):1601-1610.
[10] Oliet SHR., Piet R, Poulain DA.. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons[J].Science, 2001,292(5518):923-926.
[11] Iino M, Goto K, Kakegawa W, et al. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia[J]. Science, 2001,292(5518):926-929.
[12] Smith JP, Cunningham LA, Partridge LD. Coupling of AMPA receptors with the Na+/Ca2+ exchanger in cultured rat astrocytes[J]. Brain Res, 2000,887(1):98-109.
[13] Seifert G, Zhou M, Steinhauser C. Analysis of AMPA receptor properties during postnatal development of mouse hippocampal astrocytes[J]. J Neurophysiol, 1997,78(6):2916-2923.
[14] Ahmed Z, Lewis CA, Faber DS. Glutamate stimulates release of Ca2+ from internal stores in astroglia[J]. Brain Res, 1990,516(1):165-169.
[15] Schipke CG, Ohlemeyer C, Matyash M, et al. Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors[J]. FASEB J,2001,15(7):1270-1272.
[16] Nishizaki T, Matsuoka T, Nomura T, et al. Store Ca2+ depletion enhances NMDA responses in cultured human astrocytes[J]. Biochem Biophys Res Com,1999,J259(3):661-664.
[17] Zhou Z, Matlib A, Bers DM. Cytosolic and mitochondrial Ca signals in mammalian ventricular myocytes[J]. J Physiol,1998,507:379-403.
[18] Toms NJ, Roberts PJ. Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology[J]. 1999, 38(10):1511-1517.
[19] Biber K, Laurie DJ, Berthele A, et al. Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia[J]. J Neurochem., 1999,72(4):1671-1680.