对来自外部的信息大脑是如何进行记忆和产生思维的?这个问题一直像谜一样困扰着人类。通过长时间的苦苦探索,科学家开始对大脑的记忆和认知过程有了一定的了解,神经学家也在对大脑如何接收外部信息并产生思维的研究中形成了相应的理论。但是,以色列魏兹曼研究院神经生物学系依兰拉姆伯博士等人的最新发现,无疑对当前令人乐观的脑科学研究,提出了新的难题。
中枢神经系统里的细胞,是通过一种沿着神经元传递的电信号波,保持着相互间的联系的。在回答大脑是如何将各种信息进行翻译,以获得认知和了解眼前世界这个问题时,目前的理论认为,这些电信号形成了一种信号模式,在这些模式中包含着不同类型的认知信息。按照这一理论,在我们说椅子和桌子这两个词时,大脑之所以能够对其进行辨别,因为这些声音会在神经系统中产生截然不同的模式排列,然后由大脑进行翻译。如果对上述物体进行重复表述,那么,其模式会以精确和受约束的方式而生成出来。早先的实验已经证明,重复模式可以将持续期延长到1秒钟。
但是,依兰拉姆伯博士领导的研究小组,在记录被麻醉的试验鼠大脑区(即大脑皮层)神经元活动的数据并对其进行分析时发现,生成的模式在数量上并无差异,或者说,它们重复某些过程以形成不同模式所占用的时间是一样的,并且呈现随机化的排列顺序。因此他们认为,观察到的模式,不可能是由理论上认定的控制机制决定的,而纯粹是随机的。
这一研究成果可能会对当前关于神经元编码的争论产生极大的影响。拉姆伯说:“从20世纪80年代以来,许多神经学家认为,他们掌握了最终开启了解大脑工作原理的钥匙,但是,我们获得的最有力的证据说明,大脑可能不是利用精确的活动模式来进行信息编码的。”
这一研究成果发表在近期出版的《神经元》杂志上。
部分英文原文:
Neuron, Vol 53, 413-425, 01 February 2007
Article
Stochastic Emergence of Repeating Cortical Motifs in Spontaneous Membrane Potential Fluctuations In Vivo
Alik Mokeichev,1,2 Michael Okun,1,3 Omri Barak,1 Yonatan Katz,1 Ohad Ben-Shahar,2 and Ilan Lampl1,
1 Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
2 Department of Computer Science and The Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
3 Department of Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Corresponding author
Ilan Lampl
ilan.lampl@weizmann.ac.il
It was recently discovered that subthreshold membrane potential fluctuations of cortical neurons can precisely repeat during spontaneous activity, seconds to minutes apart, both in brain slices and in anesthetized animals. These repeats, also called cortical motifs, were suggested to reflect a replay of sequential neuronal firing patterns. We searched for motifs in spontaneous activity, recorded from the rat barrel cortex and from the cat striate cortex of anesthetized animals, and found numerous repeating patterns of high similarity and repetition rates. To test their significance, various statistics were compared between physiological data and three different types of stochastic surrogate data that preserve dynamical characteristics of the recorded data. We found no evidence for the existence of deterministically generated cortical motifs. Rather, the stochastic properties of cortical motifs suggest that they appear by chance, as a result of the constraints imposed by the coarse dynamics of subthreshold ongoing activity.