台“清华大学”脑科学研究中心教授江安世研究团队所发展出的“脑内的嗅觉神经网络地图”,对于明了人脑的功能及脑疾病治疗方法,有极大帮助,已发表于本期学重要期刊“Cell”,受国际瞩目。
据“中央社”报道,“国科会”3日召开“脑科学新发现—脑内的嗅觉神经网络地图”记者会,江安世指出,基因解碼及脑的认知与行为是上世纪末已显现的两个科学领域的重大研究成果;但是明了基因如何在复杂的脑神经网络中表达及运作,促使神经细胞发展出控制各种行为的功能,却仍是个困难的挑战。
“国科会”指出,“清华”江安世团队利用已获数项专利的高解析生物影像技术,以及果蝇可随意观察及操控基因的表达优点,发现果蝇脑内嗅觉信号自第二阶层传到到第三层时,神经元与神经元间的连结也具有特定,但不同于第一阶层型式的配对。
江安世表示,研究发现,嗅觉在触角叶的编码会更进一步转译在蕈状体中再被解碼;而蕈状体已知是嗅觉的关连性学习与记忆中不可缺少的脑内运算中心;经由蕈状体的计算整合各种神经讯号后,再循不同路径向脑内更高阶层中心输送。
他并说,目前“清大”发现的是第三层,而层数的意义在科学家的解读是作为层层把关,因为第一层对于讯号的接收没有选择性,更多层的筛选可将背景噪声清除,让真正讯号加强,再传入脑内运算、做出决定。他预测10年内果蝇的全脑基因表现及神经网络数据库可能建置完成。
江安世进一步指出,基本上不同动物的单一神经细胞修复皆类似,这也是何以科学家选择使用果蝇建置相关资料;“全脑基因表现及神经网络数据库”计划是结合“基因体计划”及“脑神经网络研究”的历史性大计划,将有助于明了人脑的功能及脑疾病治疗方法的研究,相信科学家将运用于实行最简单、快速方式治疗;目前并有研究机构透过相关研究解读出同性恋如何产生。
这项重大发现已刊登于2007年3月国际科学期刊“细胞(CELL)”,江安世也于今年3月,获培育众多诺贝尔奖得主的HowardHughes医学中心成立的JaneliaFarm研究中心之邀,于其今年3月开幕的第一个果蝇脑科学会议进行大会主讲。
部分英文原文:
Cell ,Volume 128, Issue 6 , 23 March 2007, Pages 1205-1217
A Map of Olfactory Representation in the Drosophila Mushroom Body
Hui-Hao Lin1, 2, Jason Sih-Yu Lai1, 2, An-Lun Chin1, 2, Yung-Chang Chen3, 4 and Ann-Shyn Chiang1, 2, 3, 5, 6
1Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
2Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
3Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
4Engineering and System Science group, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
5Department of Life Science, National Central University, Taoyuan 32001, Taiwan, ROC
6Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
Received 19 July 2006; revised 16 January 2007; accepted 5 March 2007. Published: March 22, 2007. Available online 22 March 2007.
Summary
Neural coding for olfactory sensory stimuli has been mapped near completion in the Drosophila first-order center, but little is known in the higher brain centers. Here, we report that the antenna lobe (AL) spatial map is transformed further in the calyx of the mushroom body (MB), an essential olfactory associated learning center, by stereotypic connections with projection neurons (PNs). We found that Kenyon cell (KC) dendrites are segregated into 17 complementary domains according to their neuroblast clonal origins and birth orders. Aligning the PN axonal map with the KC dendritic map and ultrastructural observation suggest a positional ordering such that inputs from the different AL glomeruli have distinct representations in the MB calyx, and these representations might synapse on functionally distinct KCs. Our data suggest that olfactory coding at the AL is decoded in the MB and then transferred via distinct lobes to separate higher brain centers.