麻省理工学院的媒体实验室的科学家,发明了一种方法,以可逆的方式,使用脉冲黄光让脑细胞沈寂下来,可以让某些疾病如癫痫与帕金森氏症产生的疯狂神经元活动获得控制。
由于这类疾病必须移除造成不正常活动的神经元进行治疗,而 MIT新的研究成果,将有助于发生出导致视觉脑部义肢,并用以控制神经元,因此不需要为患者进行手术。
研究领导人Edward Boyden表示,未来,控制神经元活动可用于治疗精神疾病与神经相关病症,而且几乎不会造成副作用。
Boyden 与媒体实验室研究伙伴 Xue Han 在3月21日出刊的 Public Library of Science ONE (PLOS One) 期刊上发表他们的结果。
这项研究利用了一种称为 halorhodopsin的基因(编按:这是一种古视紫红质,一种光驱动的离子帮浦,特别是氯离子),可在盐分极高的卤水里生存的嗜盐细菌中发现它的存在。在此细菌中,一种光活化氯化物帮浦蛋白质Natronomas pharaonis可以帮助细菌制造能量。
当神经元经过改造,让它能够表现 halorhodopsin 基因,研究者可透过黄光来抑制它们的活性。光线会活化这种氯化物帮浦,那可驱动氯离子进入神经元,降低其电压,并抑制其发射。这种抑制效应对于因神经元发射失控而产生的疾病相当有效。
媒体实验室的神经工程小组计划在今年,于基因改造的小鼠身上研究这样的装置。研究小组也计划用这种新方式来研究神经回路,再加上Boyden去年发明的一种技术,以上闪蓝光的方式刺激的神经元,所以研究人员可利用蓝光与黄光,对单一神经元的刺激与抑制,进行敏锐的控制。
(资料来源 : Bio.com)
部分英文原文:
PLOS One, Mar 21, 2007
Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution
Xue Han1,2, Edward S. Boyden2*
1 Stanford University School of Medicine, Stanford, California, United States of America, 2 Massachusetts Institute of Technology Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, 1channelrhodopsin-2 (ChR2), for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the 1codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo) to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells.
英文全文链接: