生物谷综合:过去30年间,科学家们一直都在争论哺乳动物耳蜗外毛细胞(outerhaircells)如何扩增听力的,来自美国圣犹大儿童研究医院(St.JudeChildren’sResearchHospital),美国克瑞屯大学(CreightonUniversity),西北大学神经生物学与生理学系的研究人员将突变引入到了胚胎干细胞,获得了一种只包含prestin突变的遗传工程小鼠,从而认为体细胞运动也许是哺乳动物耳蜗声音扩增过程中的关键因子。
文章的通讯作者是来自美国圣犹大儿童研究医院的左键博士,其早年毕业于华中科技大学,于加州大学旧金山分校获得了博士学位。
耳蜗(Cochlea)是内耳的一个解剖结构,它和前庭迷路一起组成内耳骨迷路。耳蜗的名称来源于其形状与蜗牛壳的相似性,耳蜗的英文名Cochlea,即是拉丁语中“蜗牛壳”的意思。耳蜗是外周听觉系统的组成部分。其核心部分为柯蒂氏器(OrganofCorti),是听觉转导器官,负责将来自中耳的声音信号转换为相应的神经电信号,交送脑的中枢听觉系统接受进一步处理,最终实现听觉知觉。耳蜗的病变和多种听觉障碍密切相关。
耳蜗位于颞骨(Temporalbone)深处,毗邻中耳听骨链和脑干,和是内耳骨迷路的组成部分。耳蜗的几何对称轴,称为耳蜗轴(Modiolus)大致处在水平面内,与颞骨表面垂直。前庭耳蜗神经与听觉相关的一部分:耳蜗神经,起源自耳蜗。
耳蜗的蜗牛形状只在哺乳类动物存在,一些其他动物的耳蜗虽然不具有螺旋形状(例如鸟类的线形耳蜗),但是仍然称为“耳蜗”。
毛细胞(Haircells)规则地分布于基底膜之上,自耳蜗底端至顶端的全长范围内形成平行的四列。其中靠近耳蜗中心的一列称为内毛细胞(Innerhaircells);远离中心的三列称为外毛细胞(Outerhaircells)。
两类毛细胞的顶部都有若干列静纤毛(Stereocilia),同时有少量动纤毛(Kinocilia)(只在发育中的毛细胞存在)。当外淋巴在机械震动下带动盖膜和基底膜形成相对剪切运动时,纤毛发生摇摆。纤毛的摇摆通过一些尚未研究透彻的机制,导致纤毛顶部附近的离子通道的开闭,形成跨膜电流和感受器电位。
内毛细胞是感受器细胞,与若干个听神经纤维形成突触连接。负责将机械振动转化为与之相连的听神经纤维的动作电位。外毛细胞与来自
上橄榄核的传出神经以及另一类型的传入神经(称为II型传入纤维)形成突触,其生理功能尚不完全清楚,一般认为与增强听神经的高度频率选择性、耳蜗的调节和自我保护机制有关。
过去30年间,科学家们一直都在争论哺乳动物耳蜗外毛细胞(outerhaircells)如何扩增听力的,目前有两种流行的机制。当声音到达耳蜗的时候,毛细胞以刺激频率随着声音长度震荡,这种“体细胞运动”(somaticmotility)只在哺乳动物中发现过,被认为是由动力蛋白prestin驱动的,位于毛细胞基层的纤毛也随之振动。
虽然是否体细胞运动只存在于纤毛驱动的扩增器中是一个悬而未决的问题,但是高建钢(JiangangGao,音译)等人在实验中发现事实并不是如此。野生型毛细胞在得到声音信号后会缩短,并且在这种减少了长度周围震荡。相反表达之前发现的prestin突变的毛细胞则在增加长度周围震荡,因此突变细胞中纤毛的位置是有偏向性的,如果这种偏向改变了纤毛的扩增,那么突变动物中的听力就会受到影响。
所以,在这篇文章中,研究人员将突变引入到了胚胎干细胞,获得了一种只包含prestin突变的遗传工程小鼠,这些小鼠中毛细胞的有关实验则表明反应频率是正常的,听力也没发现改变。因此研究人员认为体细胞运动也许在哺乳动物耳蜗声音扩增过程中占主导调控地位。
原始出处:
Published online before print July 18, 2007, 10.1073/pnas.0700356104
PNAS | July 24, 2007 | vol. 104 | no. 30 | 12542-12547
BIOLOGICAL SCIENCES / NEUROSCIENCE
Prestin-based outer hair cell electromotility in knockin mice does not appear to adjust the operating point of a cilia-based amplifier
Jiangang Gao*, Xiang Wang, Xudong Wu*, Sal Aguinaga, Kristin Huynh, Shuping Jia, Keiji Matsuda, Manish Patel*, Jing Zheng, MaryAnn Cheatham, David Z. He, Peter Dallos,, and Jian Zuo*,*,¶
*Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105; Department of Biomedical Sciences, Creighton University, Omaha, NE 68178; and Departments of Communication Sciences and Disorders and Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
Edited by Charles F. Stevens, The Salk Institute for Biological Studies, La Jolla, CA, and approved May 18, 2007 (received for review January 15, 2007)
The remarkable sensitivity and frequency selectivity of the mammalian cochlea is attributed to a unique amplification process that resides in outer hair cells (OHCs). Although the mammalian-specific somatic motility is considered a substrate of cochlear amplification, it has also been proposed that somatic motility in mammals simply acts as an operating-point adjustment for the ubiquitous stereocilia-based amplifier. To address this issue, we created a mouse model in which a mutation (C1) was introduced into the OHC motor protein prestin, based on previous results in transfected cells. In C1/C1 knockin mice, localization of C1-prestin, as well as the length and number of OHCs, were all normal. In OHCs isolated from C1/C1 mice, nonlinear capacitance and somatic motility were both shifted toward hyperpolarization, so that, compared with WT controls, the amplitude of cycle-by-cycle (alternating, or AC) somatic motility remained the same, but the unidirectional (DC) component reversed polarity near the OHC's presumed in vivo resting membrane potential. No physiological defects in cochlear sensitivity or frequency selectivity were detected in C1/C1 or C1/+ mice. Hence, our results do not support the idea that OHC somatic motility adjusts the operating point of a stereocilia-based amplifier. However, they are consistent with the notion that the AC component of OHC somatic motility plays a dominant role in mammalian cochlear amplification.
cochlear amplification | mechanosensory | prestin