生物谷报道:美国斯坦福大学和加拿大麦基尔大学的研究人员近日在《神经元》杂志上联名发表文章说,音乐和语言一样,是人类与生俱来的认知能力之一,对音乐一窍不通的人也天生具有“音乐细胞”。
两国科学家在他们的研究实验中,选取了18世纪英国作曲家博伊斯不太为人所知的作品,结果发现,参与实验者每当感觉到音乐中的变化起伏时就会按下按钮。
研究显示,对音乐根本不懂的人也具有对节奏和音调的感知能力,能够区分乐曲的开始和结束,将接收到的听觉信息分段并加以理解。
研究者发现,我们听到的声音与大脑的情绪中枢脑扁桃体有直接联系,音乐对大脑的影响使我们的情绪与音乐直接联系在一起。研究人员指出,音乐会影响和改变人们的激动和反感的程度,甚至会影响人们集中精力的程度。
在19世纪,德国神经学家布罗德曼将人的大脑分为52个区,其中第47区是负责语言和音乐的。美国和加拿大科学家的这项研究指出,当乐曲发生变化时,第47区也会随之发生变化,特别是在音乐停顿的间歇,大脑似乎在利用音乐的暂停来破译乐曲的变化。
但科学家也指出,在对音乐信息进行处理的过程中,大脑的几个不同部分共同参与工作。(新华网)
原始出处:
Neuron, Vol 55, 521-532, 02 August 2007
Neural Dynamics of Event Segmentation in Music: Converging Evidence for Dissociable Ventral and Dorsal Networks
Devarajan Sridharan,1,2, Daniel J. Levitin,4 Chris H. Chafe,5 Jonathan Berger,5 and Vinod Menon1,2,3,
1 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
2 Program in Neuroscience, Stanford University School of Medicine, Stanford, CA 94305, USA
3 Neuroscience Institute at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
4 Departments of Psychology and Music Theory, School of Computer Science, and Program in Behavioural Neuroscience, McGill University, Montreal, QC, Canada
5 Department of Music and Center for Computer Research in Music and Acoustics, Stanford, CA 94305, USA
Corresponding author
Devarajan Sridharan
dsridhar@stanford.edu
Corresponding author
Vinod Menon
menon@stanford.edu
Summary
The real world presents our sensory systems with a continuous stream of undifferentiated information. Segmentation of this stream at event boundaries is necessary for object identification and feature extraction. Here, we investigate the neural dynamics of event segmentation in entire musical symphonies under natural listening conditions. We isolated time-dependent sequences of brain responses in a 10 s window surrounding transitions between movements of symphonic works. A strikingly right-lateralized network of brain regions showed peak response during the movement transitions when, paradoxically, there was no physical stimulus. Model-dependent and model-free analysis techniques provided converging evidence for activity in two distinct functional networks at the movement transition: a ventral fronto-temporal network associated with detecting salient events, followed in time by a dorsal fronto-parietal network associated with maintaining attention and updating working memory. Our study provides direct experimental evidence for dissociable and causally linked ventral and dorsal networks during event segmentation of ecologically valid auditory stimuli.