(图片来源:Nature)
很多人的内心深处都安全地隐藏着不为人知的秘密,即使动用今日最先进的脑成像技术也无法阅读他们的心思。不过这些人要小心了,科学家正在朝着这个方向努力。美国科学家近日利用创建的电脑模型和功能核磁共振成像(fMRI)扫描仪,通过“解码”神经系统活性,成功地确定出一个人刚刚所看到的图片。相关论文3月5日在线发表于《自然》(Nature)杂志上。
之前也有过类似的研究,不过都比较简单,包含的图像要么太简单,要么就是已经按类排好。在最新的研究中,美国加州大学伯克利分校的神经学家Jack Gallant和同事尝试了难度更大的实验——利用大脑视觉皮层活性来确定受试人员所观看图片中的某一张,即使他之前从未见过这张图片。
在实验的第一阶段,两个受试人员(Kendrick Kay和Thomas Naselaris)每人观看包括多种物体和风景的1750张图片,同时利用fMRI扫描仪监测他们视觉皮层的反应。基于这些数据,研究人员将视觉皮层划分为很多小的立方块,并创建了一个数学模型来表现每个立方对不同视觉特征作出的反应。通过结合数以百计的立方模型,研究人员希望能够预测视觉皮层怎样对任意给定图像作出反应。
第二阶段,Kay和Naselaris观看了120张他们之前从未见过的图片,同时用fMRI扫描仪记录下他们视觉皮层的活性。研究人员将记录的活性与模型预测的活性进行了比较,结果发现,Naselaris的120张图片模型预测对了110张,Kay的120张对了86张。当Naselaris再次观测1000张新图片,模型仍旧能够正确预测其中的82%。
美国斯坦福大学的神经学家Brian Wandell认为,这一模型吸收了之前对视觉系统来之不易的发现,是一个很大的改进。他说:“它应用了我们对大脑的相关认识,在某种程度上比其它一些实验要深刻得多。”
不过Gallant表示,这并不意味着能“读心”的大脑扫描仪就要出现了。此次的模型仅仅只能确定已知的图片,迄今为止,还没有电脑模型能够利用fMRI数据重建人们的真实所见,将来也许能够重建梦境和记忆的视觉内容,但这也是非常遥远的事情。Gallant据此开玩笑道,换句话说,某些心藏诡秘的人要想洗心革面重新做人,还有的是时间。(科学网 梅进/编译)
生物谷推荐原始出处:
(Nature),doi:10.1038/nature06713,Kendrick N. Kay,Jack L. Gallant
Identifying natural images from human brain activity
Kendrick N. Kay, Thomas Naselaris, Ryan J. Prenger & Jack L. Gallant
A challenging goal in neuroscience is to be able to read out, or decode, mental content from brain activity. Recent functional magnetic resonance imaging (fMRI) studies have decoded orientation, position and object category from activity in visual cortex. However, these studies typically used relatively simple stimuli (for example, gratings) or images drawn from fixed categories (for example, faces, houses), and decoding was based on previous measurements of brain activity evoked by those same stimuli or categories. To overcome these limitations, here we develop a decoding method based on quantitative receptive-field models that characterize the relationship between visual stimuli and fMRI activity in early visual areas. These models describe the tuning of individual voxels for space, orientation and spatial frequency, and are estimated directly from responses evoked by natural images. We show that these receptive-field models make it possible to identify, from a large set of completely novel natural images, which specific image was seen by an observer. Identification is not a mere consequence of the retinotopic organization of visual areas; simpler receptive-field models that describe only spatial tuning yield much poorer identification performance. Our results suggest that it may soon be possible to reconstruct a picture of a person's visual experience from measurements of brain activity alone.