研究人员最新发现,通过监测大脑活动能够预测人们的错误行为。研究人员称,将借助这一发现开发出“早期预警系统”,以帮助人们防止犯错。
挪威贝尔根大学的研究人员汤姆·艾歇尔等人在新一期美国《国家科学院院刊》(PNAS)上介绍说,他们发现,通常在人们犯下某种错误之前约30秒,大脑一个特定部位的血流量会增加。因此,通过监测该部位的活动情况,可能会预防人们犯错。
研究人员举例说,当人们从事枯燥乏味的工作时,大脑往往会逐渐进入“休息”状态,也就进入了容易犯错的状态。与此同时,大脑特定部位的血流量却有所增加,表明该区域的活动增强。
“借助于这一发现,我们可以设计一个头戴式的早期预警系统”,艾歇尔说,“这样一旦监测发现大脑中的上述特定区域出现活动增强,就可以发出警告,提醒人们不要出错。”(来源:新华网)
生物谷推荐原始出处:
(PNAS),doi:10.1073/pnas.0708965105,Tom Eichele,Markus Ullsperger
Prediction of human errors by maladaptive changes in event-related brain networks
Tom Eichele*,, Stefan Debener, Vince D. Calhoun,¶,||, Karsten Specht*,**, Andreas K. Engel, Kenneth Hugdahl*,**, D. Yves von Cramon, and Markus Ullsperger,
*Department of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway; Medical Research Council Institute of Hearing Research, Southampton SO14 OYG, United Kingdom; MIND Institute, Albuquerque, NM 87131; ¶Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131; ||Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520; **Haukeland University Hospital, 5021 Bergen, Norway; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg–Eppendorf, 20246 Hamburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; and Max Planck Institute for Neurological Research, 50931 Cologne, Germany
Edited by Marcus E. Raichle, Washington University School of Medicine, St. Louis, MO, and approved March 4, 2008 (received for review September 21, 2007)
Abstract
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve 30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations.