科学家找到了将经历与认知联系起来的分子机制。
(图片提供:CORBIS)
大脑如何形成一次记忆?通常,我们的经历和相互作用会以某种方式在大脑中留下烙印,然而神经细胞究竟是如何改变它们的连接从而形成记忆,却一直是个未解之谜。如今,科学家表示,他们找到了将经历与认知联系起来的分子机制,而这一切似乎全部要归功于一台微小的分子发动机。
科学家相信,记忆的存储与一个名为长时程增强(LTP)的过程有关,该过程强化了神经细胞对之间的联系。神经细胞通过释放神经传递素——用于刺激周围“邻居”的受体——来进行交流,而LTP能够触发更多的受体聚集在接收细胞的细胞膜上,从而使其对于到来的信息更为敏感。
之前的研究表明,肌动蛋白和肌球蛋白——在肌肉收缩中扮演重要角色的两种蛋白质——在神经细胞的受体积聚过程中起到了关键作用。为了研究这种可能性,美国北卡罗莱纳州达勒姆市杜克大学医学中心的神经生物学家Michael Ehlers和他的同事,利用定时成像和生物化学方法,对小鼠的大脑切片进行了研究。这些试验显示,一个引入的信号能够触发大量的钙进入一个神经细胞。这些钙会激活一种肌球蛋白——肌球蛋白Vb,从而促使它获得储存在细胞深处的受体包,并将这些受体包带到神经细胞的信号位点,在这里,受体能够接收神经传递素,并参与LTP过程。
为证实肌球蛋白Vb的确是让认知过程变为可能的发动机,Ehlers和他的同事利用化学方法抑制神经细胞中的肌球蛋白Vb,这些细胞于是便无法产生LTP。研究人员在最新一期的《细胞》杂志上报告了这一研究成果。Ehlers指出:“对于一个马达分子竟然能够解释大多数的膜传输过程,我们感到非常惊讶。事实上,它很可能就是形成记忆的‘发动机’。”
在美国亚拉巴马州奥本大学从事细胞信号研究的神经生物学家Marie Wooten认为:“研究人员所做的工作将许多点连接在一起。”Wooten指出,这篇论文一层一层地展示了,神经细胞如何在LTP期间将受体转移到它们的外部膜。夏洛茨维尔市弗吉尼亚大学的神经科学家Bettina Winckler对此表示赞同。Winckler表示,“这篇论文就像是一块钻石”,或者说是一台设计完美的发动机。她说:“它能够完美地适应每件事物。”(生物谷Bioon.com)
生物谷推荐原始出处:
Cell, Volume 135, Issue 3, 535-548, 31 October 2008 doi:10.1016/j.cell.2008.09.057
Myosin Vb Mobilizes Recycling Endosomes and AMPA Receptors for Postsynaptic Plasticity
Zhiping Wang1,2,Jeffrey G. Edwards3,6,Nathan Riley3,D. William Provance4,Ryan Karcher4,Xiang-dong Li5,Ian G. Davison1,2,Mitsuo Ikebe5,John A. Mercer4,Julie A. Kauer3andMichael D. Ehlers1,2,,
1 Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
2 Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
3 Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
4 McLaughlin Research Institute, Great Falls, MT 59405, USA
5 Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
Corresponding author
6 Present address: Department of Physiology and Developmental Biology, Brigham Young University, 575 WIDB, Provo, UT 84602, USA
SUMMARY
Learning-related plasticity at excitatory synapses in the mammalian brain requires the trafficking of AMPA receptors and the growth of dendritic spines. However, the mechanisms that couple plasticity stimuli to the trafficking of postsynaptic cargo are poorly understood. Here we demonstrate that myosin Vb (MyoVb), a Ca2+-sensitive motor, conducts spine trafficking during long-term potentiation (LTP) of synaptic strength. Upon activation of NMDA receptors and corresponding Ca2+ influx, MyoVb associates with recycling endosomes (REs), triggering rapid spine recruitment of endosomes and local exocytosis in spines. Disruption of MyoVb or its interaction with the RE adaptor Rab11-FIP2 abolishes LTP-induced exocytosis from REs and prevents both AMPA receptor insertion and spine growth. Furthermore, induction of tight binding of MyoVb to actin using an acute chemical genetic strategy eradicates LTP in hippocampal slices. Thus, Ca2+-activated MyoVb captures and mobilizes REs for AMPA receptor insertion and spine growth, providing a mechanistic link between the induction and expression of postsynaptic plasticity.