糖皮质激素——由肾上腺释放进血液中的一种激素——对于生存是至关重要的,然而延长暴露于高浓度糖皮质激素的时间——例如在慢性应激期间——却能够导致有害的结果,特别是对神经细胞尤为如此。美国科学家如今发现,糖皮质激素能够直接影响神经细胞中的线粒体功能,进而揭示了这些激素能够影响神经细胞功能和生存的一种机制。
美国国立卫生研究院(NIH)的Jing Du等研究人员在生物体外的皮质神经细胞中,测试了糖皮质激素肾上腺酮对线粒体功能产生的生理学(低浓度)和病理生理学(高浓度)的影响。利用低剂量肾上腺酮进行的长期和短期处理都能够增加线粒体氧化水平(利用一种对氧化还原反应敏感的染料进行评估),增加线粒体膜电位(利用一种阳离子染料进行测定),以及增加线粒体Ca2+保持能力(通过一种Ca2+指示剂的着色进行测量)。然而,尽管高浓度肾上腺酮的短期处理也能够产生类似的效果,但是持续3天暴露在高浓度肾上腺酮的环境中却能够减弱所有三项线粒体功能的检测结果。
肾上腺酮对于神经细胞的生存也具有类似的双向作用。研究人员首先用高剂量或低剂量的肾上腺酮处理神经细胞,随后用红藻氨酸——能够导致细胞凋亡——与其发生反应。结果显示,低剂量肾上腺酮处理1天或3天能够增强神经细胞的存活几率;而在这两种时间段内,用高剂量肾上腺酮处理却会恶化红藻氨酸的细胞凋亡效应。
研究人员随后测试了这些效应是否与糖皮质激素受体(GRs)从细胞溶质到线粒体的染色体易位有关。事实上,低剂量或高剂量的肾上腺酮短期(1.5小时)处理能够增强GRs的线粒体定位。然而,在连续3天用高剂量肾上腺酮处理后,这种染色体易位的出现几率减少了,低剂量肾上腺酮则没有产生这种情况。免疫沉淀反应试验更进一步地表明了这种关系。在线粒体中,GRs与抗细胞凋亡蛋白质BCL2结合在一起。短期暴露在高剂量和低剂量的肾上腺酮下,BCL2的浓度在线粒体中得到了增加,但连续3天暴露在高剂量肾上腺酮环境中,BCL2的浓度则出现了下降。最后在活的有机体中的试验也证明了这一发现——在实验室小鼠体内,肾上腺酮的慢性处理(3周时间)降低了大脑前额叶皮质线粒体中的GR和BCL2水平。研究人员在最近出版的美国《国家科学院院刊》上报告了这一研究成果。
总体来说,研究人员指出,生理学上的低糖皮质激素水平能够提高线粒体的功能,然而高糖皮质激素水平最终却会削弱这种功能。糖皮质激素的这种双向作用类似于糖皮质激素水平与海马趾功能之间的倒U型关系。这一发现表明存在一种机制,即慢性压力有损于神经细胞功能和生存,考虑到实际上所有细胞都包含有线粒体和GRs,因此它同时也会影响到其他类型的细胞。(生物谷Bioon.com)
生物谷推荐原始出处:
PNAS February 6, 2009, doi: 10.1073/pnas.0812671106
Dynamic regulation of mitochondrial function by glucocorticoids
Jing Dua, Yun Wanga, Richard Hunterb, Yanling Weia, Rayah Blumenthala, Cynthia Falkea, Rushaniya Khairovaa, Rulun Zhoua, Peixiong Yuana, Rodrigo Machado-Vieiraa, Bruce S. McEwenb,1 and Husseini K. Manjia,1
aLaboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; and
bLaboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065
Contributed by Bruce S. McEwen, December 22, 2008 (received for review April 7, 2008)
Abstract
Glucocorticoids play an important biphasic role in modulating neural plasticity; low doses enhance neural plasticity and spatial memory behavior, whereas chronic, higher doses produce inhibition. We found that 3 independent measures of mitochondrial function—mitochondrial oxidation, membrane potential, and mitochondrial calcium holding capacity—were regulated by long-term corticosterone (CORT) treatment in an inverted “U”-shape. This regulation of mitochondrial function by CORT correlated with neuroprotection; that is, treatment with low doses of CORT had a neuroprotective effect, whereas treatment with high doses of CORT enhanced kainic acid (KA)-induced toxicity of cortical neurons. We then undertook experiments to elucidate the mechanisms underlying these biphasic effects and found that glucocorticoid receptors (GRs) formed a complex with the anti-apoptotic protein Bcl-2 in response to CORT treatment and translocated with Bcl-2 into mitochondria after acute treatment with low or high doses of CORT in primary cortical neurons. However, after 3 days of treatment, high, but not low, doses of CORT resulted in decreased GR and Bcl-2 levels in mitochondria. As with the in vitro studies, Bcl-2 levels in the mitochondria of the prefrontal cortex were significantly decreased, along with GR levels, after long-term treatment with high-dose CORT in vivo. These findings have the potential to contribute to a more complete understanding of the mechanisms by which glucocorticoids and chronic stress regulate cellular plasticity and resilience and to inform the future development of improved therapeutics.