大脑和脊髓一旦发生损伤,那么这种损伤通常是永久性的,因为受到损伤的神经纤维(轴突)无法再生。但最近,美国波士顿儿童医院的一项关于老鼠的研究发现,删除模式老鼠基因组中能抑制生长因子的一个基因,将能使轴突再次形成。这项研究发表在12月10日Neuron杂志上。
此前,Zhigang He及其同事利用遗传技术删除了老鼠视网膜神经节细胞内生长通路——mTOR通路的两个抑制因子。他们随后发现,这两个抑制因子被删除后,老鼠大脑内受损的轴突能够快速再生,但对为受损的轴突没有影响,这表明,损伤能够诱导轴突再生。
在这项新的研究中,该课题的研究人员对老鼠采用了第二套遗传技术,他们删除了老鼠视网膜神经节细胞的炎症信号——SOCS3的抑制因子,结果发现损伤后轴突又开始生长,并且生长最明显的时期发生在损伤后一周,此时也是mTOR通路的信号被重新激活的时期。
此外,课题组还发现视网膜内另一种生长因子——睫状神经营养因子(ciliary neurotrophic factor,CNTF)也显著增加。当CNTF直接作用于眼睛内,神经元轴突的生长速度甚至快于当SOCS3被删除后的轴突的生长速度。但如果SOCS3未被删除,那么老鼠视网膜内CNTF增加的速度十分缓慢。
据He介绍,之前也有科学家测试过CNTF及其他细胞因子对促进轴突生长的影响,但都未成功。现在看来,这都是由于受到SOCS3的负调控机制的影响。因此,通过某些小分子化合物或RNA干扰技术抑制SOCS3,或许可以使这些细胞因子发挥功能。
课题组还发现还可以通过另一条途径促进轴突再生,即直接刺激抑制SOCS3的信号通路JAK/STAT。(生物谷Bioon.com)
神经再生与修复研究:
PNAS:氨基酸可增强脑外伤恢复
Nature Neuroscience:嗅球中神经干细胞可修复大脑损伤
J. Cell. Biochem.:人类毛囊干细胞可修复神经
PLoS ONE:重组人神经生长因子可用于神经修复
生物谷推荐原始出处:
Neuron, Volume 64, Issue 5, 617-623, 10 December 2009 doi:10.1016/j.neuron.2009.11.021
SOCS3 Deletion Promotes Optic Nerve Regeneration In Vivo
Patrice D. Smith1, 2, 3, Fang Sun1, 3, Kevin Kyungsuk Park1, Bin Cai1, Chen Wang1, Kenichiro Kuwako1, Irene Martinez-Carrasco1, Lauren Connolly1 and Zhigang He1, ,
1 F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
2 Institute of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
Axon regeneration failure accounts for permanent functional deficits following CNS injury in adult mammals. However, the underlying mechanisms remain elusive. In analyzing axon regeneration in different mutant mouse lines, we discovered that deletion of suppressor of cytokine signaling 3 (SOCS3) in adult retinal ganglion cells (RGCs) promotes robust regeneration of injured optic nerve axons. This regeneration-promoting effect is efficiently blocked in SOCS3-gp130 double-knockout mice, suggesting that SOCS3 deletion promotes axon regeneration via a gp130-dependent pathway. Consistently, a transient upregulation of ciliary neurotrophic factor (CNTF) was observed within the retina following optic nerve injury. Intravitreal application of CNTF further enhances axon regeneration from SOCS3-deleted RGCs. Together, our results suggest that compromised responsiveness to injury-induced growth factors in mature neurons contributes significantly to regeneration failure. Thus, developing strategies to modulate negative signaling regulators may be an efficient strategy of promoting axon regeneration after CNS injury.